Haldia Institute of Technology (Autonomous)

B. Tech in Computer Science & Engineering (Cyber Security)

PROGRAM OUTCOMES (ALIGNED WITH GRADUATE ATTRIBUTES) (PO)

At the end of this program, graduates will be able to

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Curriculum Structure

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>Engineering Science Course</td>
<td>ESC-CS-301</td>
<td>Digital Electronics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-CS-301</td>
<td>Data Structure and Algorithms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Semester IV (Second year)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Theory</td>
<td>ESC-CS-401</td>
<td>Discrete Mathematics</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-CS-401</td>
<td>Object Oriented Programming</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Professional Core Course</td>
<td>PCC-CS-402</td>
<td>Operating System</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Professional Core Course</td>
<td>PCC-CS-403</td>
<td>Formal Language and Automata Theory</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Basic Science Course</td>
<td>BSC-CS-401</td>
<td>Biology</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Mandatory Course</td>
<td>MC-CS-401</td>
<td>Environmental Sciences</td>
<td>2 0 0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Practica</td>
<td>PCC-CS-491</td>
<td>Object Oriented Programming Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Professional Core Course</td>
<td>PCC-CS-492</td>
<td>Operating System Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Semester V (Third year)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Theory</td>
<td>ESC-CS-501</td>
<td>Probability and Statistics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-CS-501</td>
<td>Database Management System</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Professional Core Course</td>
<td>PCC-CS-502</td>
<td>Design and Analysis of Algorithm</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Professional Core Course</td>
<td>PCC-CS-503</td>
<td>Data Communication and Networks</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Professional Core Course</td>
<td>PCC-CS-504</td>
<td>Cryptography</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Type of Course</td>
<td>Code</td>
<td>Course Title</td>
<td>Hours per week</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------</td>
<td>---</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>Professional Core Course</td>
<td>PCC-CS-505</td>
<td>Malware Analysis</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Practica</td>
<td>PCC-CS-591</td>
<td>Database Management System Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Professional Core Course</td>
<td>PCC-CS-592</td>
<td>Design and Analysis of Algorithm Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>Professional Core Course</td>
<td>PCC-CS-593</td>
<td>Data Communication and Networks Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>23.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Core Course</td>
<td>PCC-CS-601</td>
<td>Network Security</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-CS-602</td>
<td>Ethical Hacking</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Professional Core Course</td>
<td>PCC-CS-603</td>
<td>Artificial Intelligence</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Humanities and Social Sciences including Management</td>
<td>HSMC-CS-601</td>
<td>Human Values and Professional Ethics</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Professional Elective Course I</td>
<td>PEC-CS-601 (A/B/C/D)</td>
<td>Computer Graphics Internet Technology IoT Application and Design Graph Theory</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Open Elective Course I</td>
<td>OEC-CS-601 (A/B/C/D)</td>
<td>Cyber Law and Cyber Crime Embedded System Human Resource Management Economic Policies in India</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Practica</td>
<td>PCC-CS-691</td>
<td>Cryptography & Network Security Lab</td>
<td>0 0 3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Professional Core Course</td>
<td>PCC-CS-692</td>
<td>Artificial Intelligence Lab</td>
<td>0 0 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>19.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Elective Course II</td>
<td>PEC-CS-701 (A/B/C/D)</td>
<td>Cloud Computing Software Engineering Steganography and Watermarking Digital Forensics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective Course III</td>
<td>PEC-CS-702 (A/B/C/D)</td>
<td>Block chain and Cryptocurrency Social Network Analysis Advanced Computer Architecture Big Data Analytics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Elective Course II</td>
<td>PEC-CS-701 (A/B/C/D)</td>
<td>Cloud Computing Software Engineering Steganography and Watermarking Digital Forensics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective Course III</td>
<td>PEC-CS-702 (A/B/C/D)</td>
<td>Block chain and Cryptocurrency Social Network Analysis Advanced Computer Architecture Big Data Analytics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Type of Course</td>
<td>Code</td>
<td>Course Title</td>
<td>Hours per week</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>Open Elective Course II</td>
<td>OEC-CS-701 (A/B/C/D)</td>
<td>Natural Language Processing Soft skill and Interpersonal Communication Digital Signal Processing Machine Learning</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Humanities and Social Sciences Including Management</td>
<td>HSMC-CS-701</td>
<td>Project Management and Entrepreneurship</td>
<td>2 0 0 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Project</td>
<td>PROJ-CS-781</td>
<td>Project I</td>
<td>0 0 10 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Summer Internship</td>
<td>SI-CS-782</td>
<td>Internship I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

19

Semester VIII (Fourth year)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Type of Course</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Elective Course IV</td>
<td>PEC-CS-801 (A/B/C/D)</td>
<td>Quantum Computing Information Theory and Coding Cyber Security in Block chain Technology Bio Informatics</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective Course V</td>
<td>PEC-CS-802 (A/B/C/D)</td>
<td>Security Assessment and Risk Analysis Mobile Computing Deep Learning Digital Image Processing</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open Elective Course III</td>
<td>OEC-CS-801 (A/B/C/D)</td>
<td>Operations Research Remote Sensing and GIS Ecommerce and ERP Business Analytics</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Open Elective Course IV</td>
<td>OEC-CS-802 (A/B/C/D)</td>
<td>Numerical Methods Multimedia Technology Introduction to Arts and Aesthetics Research Methodology</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Project</td>
<td>PROJ-CS-881</td>
<td>Project II</td>
<td>0 0 10 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Winter Internship</td>
<td>WI-CS-882</td>
<td>Internship II</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

20

Semester-III

ESC-CS-301: Digital Electronics

Contacts: 3L per week Credits: 3

Course Outcomes (COs):
At the end of this course, students will demonstrate the ability to

- Understand working of logic families and logic gates.
- Convert a number from one base system to another.
- Understand Boolean algebra and represent digital circuits from Boolean expressions.
- Design and implement many Combinational circuits.
- Design and implement various Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.

Prerequisites:
1. Number Systems

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Binary Number System & Boolean Algebra (recapitulation); BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number representation with 1’s and 2’s complement methods, Binary arithmetic, Venn diagram,</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Boolean algebra (recapitulation); Representation in SOP and POS forms; Minimization of logic expressions by algebraic method. K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don’t care conditions.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Combinational Circuits - Adder and Subtractor circuits (half & full adder & subtractor); Encoder, Decoder, Comparator, Multiplexer, De-multiplexer and Parity Generator. Error detecting and correcting codes. Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Sequential Circuits - Basic Flip-flop & Latch, Flip-flops -SR, JK, D, T and JK Master-slave Flip Flops, Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter Basic concept of Synchronous and Asynchronous counters (detail design of circuits excluded), Design of Mod N Counter. Counters design using flip-flops</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>A/D and D/A conversion techniques – Basic concepts (D/A : R-2-R only [2L] A/D: successive approximation [2L]) Logic families- TTL, ECL, MOS and CMOS - basic concepts. (2L)</td>
<td>6</td>
</tr>
</tbody>
</table>

Text book and Reference books:
3. Analog Electronics, L.K. Maheswari, Laxmi Publications (AICTE Recommended -2018)
4. Principles of Electronic Devices & circuits—B L Thereja & Sedha—S Chand
5. Digital Electronics – Kharate – Oxford
10. P.Raja- Digital Electronics- Scitech Publications
11. Morries Mano- Digital Logic Design- PHI
15. Tocci, Widmer, Moss- Digital Systems, 9/e- Pearson
17. Leach & Malvino—Digital Principles & Application, 5/e, McGraw Hill

PCC-CS-301: Data Structure and Algorithms
Course Outcomes (COs):
At the end of the course, the students will be able to:
1. **Create and Design** programs using a variety of data structures such as stacks, queues, hash tables, binary trees, heaps, graphs.
2. **Evaluate** and choose appropriate data structures to represent data items in real world.
3. **Analyze** the time and space complexities of algorithms.
4. **Implement and apply** sorting algorithms for problem solving.
5. **Understand** the concept of dynamic memory management.
6. **Identify and remember** user defined data types, linear data structures for solving real world problems.

Prerequisites:
- Programming for Problem Solving

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search techniques and their complexity analysis.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Stacks and Queue: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation–Corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each type of Queues: Algorithms and their complexity analysis.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.</td>
<td>3</td>
</tr>
</tbody>
</table>

Text book and Reference books:
1) Data Structures and Program Design in C, 2/E by Robert L. Kruse, Bruce P. Leung.
3) Fundamentals of Data Structures of C by Ellis Horowitz, Sartaj Sahni, Susan Andersonfreed.
4) Data Structures in C by Aaron M. Tenenbaum.
5) Data Structures by S. Lipschutz.
6) Data Structures Using C by Reema Thareja.
9) Data Structures through C by Yashwant Kanetkar, BPB Publications.

PCC-CS-302: Computer Organization & Architecture

Contacts: 3(L) + 1(T) per week Credits: 4

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Demonstrate the Von Neumann architecture and relate hardware with software.
2. Demonstrate sufficient knowledge and understanding of data representation, and experiment with basic arithmetic operations.
3. Analyze and model various functional units of CPU such as ALU, control unit and register file.
4. Organize the memory hierarchy and design a memory of any type.
5. Explain the instruction cycle and tell which units of the CPU are used for this process.
6. Outline various modes of I/O operations and summarize working principles of I/O interface circuits.

Prerequisites:

- Number systems
- Basic programming skills
- Basics of Digital Electronics

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage. Commonly used number systems. Fixed and floating point representation of numbers. Overflow and underflow. Floating point - IEEE 754 standard.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Fixed point multiplication –Booth’s algorithm. Fixed point division - Restoring and non-restoring algorithms. Design of adders – serial adder, ripple carry and carry look-ahead principles. Design of ALU.</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Instruction set architecture: Instruction format. Instruction length. 0-, 1-, 2-, 3-address instructions. Instruction cycle. Instruction sets and addressing modes. Introduction to RISC architectures. RISC vs CISC architectures.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Memory organization: Performance parameters, Memory unit design with special emphasis on implementation of CPU-memory interfacing. Memory hierarchy, hard disk, static and dynamic memory, associative memory. Cache memory, Virtual memory.</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Design of control unit - hardwired and microprogrammed control. Introduction to instruction pipelining.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA.</td>
<td>4</td>
</tr>
</tbody>
</table>
Text book and Reference books:

BSC-CS-301: Linear Algebra
Contacts: 3 Lectures per week Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

- **Formulate** elementary row and column operation.
- **Evaluate** matrix algebra and related matrices to linear transformation.
- **Analyze** singular value decomposition.
- **Solve** systems of linear equations.
- **Use** matrix algebra and the related matrices to linear transformations.
- **Understand** the basic ideas of linear mapping.

Prerequisites:
- Mathematics-I
- Mathematics-II

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systems of linear equations, Matrices, Elementary row operations, Row-reduced echelon matrices. Vector spaces, Subspaces, Bases and dimension, Ordered bases and coordinates.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Linear transformations, Rank-nullity theorem, Algebra of linear transformations, Isomorphism, Matrix representation, Linear functionals, Annihilator, Double dual, Transpose of a linear transformation.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Characteristic values and characteristic vectors of linear transformations, Diagonalizability, Minimal polynomial of a linear transformation, Cayley-Hamilton theorem, Invariant subspaces, Direct-sum decompositions, Invariant direct sums, The primary decomposition theorem, Cyclic subspaces and annihilators, Cyclic decomposition, Rational, Jordan forms.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Inner product spaces, Orthonormal bases, Gram-Schmidt process.</td>
<td>7</td>
</tr>
</tbody>
</table>
Text books and Reference books:

1. E Kreyszig, Advanced Engineering Mathematics, Wiley-India
9. Jim DeFranza, Daniel Gagliardi, Introduction to Linear Algebra with Application, Tata McGraw-Hill
10. Anton and Rorres, Elementary Linear Algebra, Applications version, Wiley India Edition

HSMC-CS-301: Economics for Engineers
Contacts: 2L per week Credits: 2

Course Outcomes (COs):

At the end of the course, the students will be able to:
- Evaluate the economic theories, cost concepts and pricing policies.
- Understand the market structures and integration concepts.
- Understand the measures of national income, the functions of banks and concepts of globalization.
- Apply the concepts of financial management for project appraisal.
- Understand accounting systems and analyze financial statements using ratio analysis.
- Understand the impact of inflation, taxation, depreciation. Financial planning, economic basis for replacement, project scheduling, and legal and regulatory issues are introduced and applied to economic investment and project-management problems

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5. Inflation and Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In</td>
<td>9</td>
</tr>
</tbody>
</table>
Engineering Economic Analysis, Cash Flows that inflate at different Rates.

Text books and Reference books:

2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
5. R.Paneer Seelvan: Engineering Economics, PHI

ESC-CS-391: Digital Electronics Lab
Contacts: 3P per week Credits: 1.5

Course Outcomes:
At the end of this course, students will demonstrate the ability to

- Acquire knowledge about basics of digital electronics.
- Explain about how to solve problems related to number systems and Boolean algebra.
- Identify, analyze and design combinational circuits.
- Design BCD to Excess-3 and Binary to gray code conversion circuit.
- Compare various synchronous and asynchronous sequential circuits.
- Analyze sequential digital circuits like flip-flops, registers, counters.

Laboratory Experiments:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design a Half Adder and Full Adder using basic gates and verify outputs.</td>
</tr>
<tr>
<td>2</td>
<td>Design a Half Subtractor and Full Subtractor circuit using basic gates and verify outputs.</td>
</tr>
<tr>
<td>3</td>
<td>Construction of simple Multiplexer circuits using logic gates.</td>
</tr>
<tr>
<td>4</td>
<td>Construction of simple De-multiplexer circuits using logic gates.</td>
</tr>
<tr>
<td>5</td>
<td>Construction of simple Decoder using logic gates.</td>
</tr>
<tr>
<td>6</td>
<td>Construction of simple Encoder using logic gates.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Realization of RS / JK / D flip flops using logic gates</td>
</tr>
<tr>
<td>8</td>
<td>Design of Shift Register using J-K / D Flip Flop</td>
</tr>
<tr>
<td>9</td>
<td>Realization of Synchronous Up/Down counter</td>
</tr>
<tr>
<td>10</td>
<td>Design of MOD- N Counter</td>
</tr>
<tr>
<td>11</td>
<td>Study of DAC</td>
</tr>
</tbody>
</table>

PCC-CS-391: Data Structure and Algorithms Lab

Contacts: 3P per week
Credits: 1.5

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Design and solve** programs using a variety of data structures such as stacks, queues, hash tables, binary trees, heaps, graphs.
2. **Evaluate** and choose appropriate data structures to represent data items in real world.
3. **Analyze** the time and space complexities of algorithms.
4. **Implement** sorting and searching algorithms for problem solving.
5. **Understand** the concept of dynamic memory management.
6. **Identify and remember** user defined data types, linear data structures for solving real world problems.

Prerequisites:

- Programming for Problem Solving
- Data Structure and Algorithms

Detailed Content:

1. Implementation of array operations
2. Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting elements
3. Application of Stack: Expression Evaluation, Expression Conversion
4. Implementation of linked lists: inserting, deleting, and inverting a linked list. Implementation of stacks & queues using linked lists
5. Polynomial addition, Polynomial multiplication
6. Recursive and Non-recursive traversal of Trees
7. Threaded binary tree traversal. AVL tree implementation
8. Implementation of different searching & sorting techniques.

Text book and Reference books:

5. Data Structures by S. Lipschutz.
8. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
PCC-CS-392: Computer Architecture Lab
Contacts: 3P per week Credits: 1.5

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- **Summarize** Xilinx/Altera (VHDL) foundation tools and Hardware Description Language.
- **Demonstrate** different concepts and methods of digital system design techniques through hands-on projects.
- **Build** various combinational and sequential digital systems.
- **Identify** knowledge, techniques required to design, implement and test modern day digital systems.
- **Evaluate** and **interpret** the results of logic and timing simulations.
- **Analyze** digital systems through hands-on experiments on the Xilinx/Altera tools.

Laboratory Experiments:
1. Write VHDL codes for various logic gates.
2. Using VHDL, design a half adder in data flow model.
3. Using VHDL, design a full adder in data flow model.
4. Using VHDL, design a half subtractor.
5. Using VHDL, design a full subtractor.
6. Using VHDL, design 1-bit comparator.
7. Using VHDL, design 4:1 Multiplexer in data flow model.
8. Using VHDL, design 2:4 Decoder in data flow model.
9. Using VHDL, design 1:4 DEMUX in data flow model.
10. Write VHDL code for basic gates: 2 i/p AND Gate (Multiple Bit Handling)
11. Using VHDL, design 4:1 Multiplexer using when-else structure.
12. Using VHDL, design 2: 4 Decoder using when-case structure.
14. Write VHDL code for 4-bit Up Counter
15. Write VHDL code for 4-bit Down Counter
16. Write VHDL code for 4-bit Up-Down Counter
17. Using VHDL, design SR-flip flop in behavioral model.
18. Write VHDL code for D Flip Flop
19. Using VHDL, design JK-flip flop in behavioral model.
20. Write VHDL code for T Flip Flop

PCC-CS-393: IT Workshop (Python)
Contacts: 3P per week Credits: 1.5

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. **Develop** algorithmic solutions to simple computational problems.
2. **Identify** and repair coding errors in a program.
3. **Demonstrate** programs using simple Python statements and expressions.
4. **Explain** control flow and functions concept in Python for solving problems.
5. **Use** Python data structures – lists, tuples & dictionaries for representing compound data.
6. **Explain** files, exception, modules and packages in Python for solving problems.

Prerequisites:
Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
History, Features, Setting up path, Working with Python, Basic Syntax, Variable and Data Types, Operator</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Conditional Statements
If, If- else, Nested if-else, Looping, For, While, Nested loops</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Control Statements
Break, Continue, Pass</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>String Manipulation
Accessing Strings, Basic Operations, String slices, Function and Methods</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Lists
Introduction, Accessing list, Operations, Working with lists, Function and Methods</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Tuple
Introduction, Accessing tuples, Operations, Working, Functions and Methods</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Dictionaries
Introduction, Accessing values in dictionaries, Working with dictionaries, Properties</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Functions
Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Modules
Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Exception Handling
Exception, Exception Handling, Except clause, Try and finally clause, User Defined Exceptions.</td>
<td>3</td>
</tr>
</tbody>
</table>

Laboratory Experiments:

1. Practical Assignments related with implementation of PCC-CS-393

Text book and Reference books:

5. Taneja Sheetal and Kumar Naveen, “Python Programming - A modular approach”, Pearson Education,
Semester-IV

ESC-CS-401: Discrete Mathematics
Contacts: 3(L) + 1(T) per week Credits: 4

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Apply mathematical logic to solve problems.
2. Understand sets, relations, functions and discrete structures.
3. Use logical notations to define and reason about fundamental mathematical concepts such as sets relations and functions.
4. Identify functions and determine their properties.
5. Formulate problems and solve recurrence relations.
6. Model and solve real world problems using graphs and trees.

Prerequisites:
1. Basic Mathematics
2. Probability and Statistics

Detailed Content:

<table>
<thead>
<tr>
<th>Module No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Objective, scope and outcome of the course.</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2-way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.</td>
<td>8</td>
</tr>
<tr>
<td>Module</td>
<td>Content</td>
<td>Hours/Module</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph colouring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.</td>
<td>8</td>
</tr>
</tbody>
</table>

Text/Reference Books:

1. Discrete Mathematics with Applications, Koshy, Elsevier
2. Discrete Mathematical Structures By Lipshutz & Lipson, TMH
3. Discrete Mathematical Structures, Kolmanet.al, Pearson

PCC-CS-401: Object Oriented Programming

Contacts: 3 Lectures per week
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Create and explain** GUI and thread based application.
2. **Evaluate** the complexity of procedural language by using the concept of polymorphism, inheritance, abstraction, and encapsulation.
3. **Analyze** any real world problem with object oriented approach and formulate a solution for the same.
4. **Implement and apply** object oriented approach to relate to real world problem.
5. **Understand, describe** and illustrate the features of object oriented programming.
6. **Recall** the knowledge of procedural language and map it to paradigm of Object Oriented concept.

Prerequisites:

- Programming for Problem Solving

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of OOP and Introduction to JAVA: Properties of object oriented programming language, Object, Class, relationships among objects. Aggregation, Association, Generalization, meta-class. Class, object, message passing, inheritance, encapsulation, polymorphism. Basic concept of JAVA programming– advantages of java, byte-code & JVM, data types, operators, control statements & loops, array, creation of class, object, constructor, finalize and garbage collection.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Class & Object proprieties: Different types of access specifiers, method overloading, this keyword, use of objects as parameter & methods returning objects, call by value & call by reference, static variables, methods and block nested & inner classes, Inbuilt classes like String, Character, StringBuffer, basic string handling concepts, concept of mutable and immutable string. Reusability properties: Super class & subclasses including multilevel hierarchy,</td>
<td>10</td>
</tr>
</tbody>
</table>
process of constructor calling in inheritance, use of super and final keywords with super() method, dynamic method dispatch, abstract classes & methods, interfaces. Creation of packages, importing packages, member access for packages, UTIL package.

3 Exception handling and I/O: Exception handling basics, different types of exception classes, use of try & catch with throw, throws & finally, creation of user defined exception classes. Input Output stream structure, Wrapper class, command line arguments, basics of I/O operations – keyboard input using BufferedReader & Scanner classes. File copy programming using command line arguments.

Text book and Reference books:

3. The complete reference- Java2, Patrick Naughton, Herbert Schildt, TMH.
4. Core Java For Beginners, R.K Das, VIKAS PUBLISHING.
5. Java How to Program, Deitel and Deitel, 6th Ed. – Pearson.
7. Programming With Java: A Primer, E. Balagurusamy, 3rd Ed., TMH.

PCC-CS-402: Operating System

Contacts: 3L per week Credits: 3

Course Outcomes:
At the end of this course, students will demonstrate the ability to

- Understand the mechanisms of OS to handle processes and threads and their communication
- Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time.
- Demonstrate the mechanisms involved in memory management in contemporary OS
- Understand the components and management aspects of concurrency management
- Develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time.
- Design and implement file management system.

Prerequisites:
- Digital Electronics
- Computer Organization & Architecture
- Programming Concepts

Detailed Content:
<table>
<thead>
<tr>
<th>Module</th>
<th>Textbook and Reference books:</th>
</tr>
</thead>
</table>
| 2 | **Processes:** Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching
Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,
Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling; RM and EDF. |
| 3 | **Inter-process Communication:** Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson’s Solution, The Producer-Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer Problem, Dinning Philosopher Problem etc. |
| 4 | **Deadlocks:** Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery. |
| 5 | **Memory Management:** Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition– Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging.
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). |
| 6 | **I/O Hardware:** I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms
File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.
Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks |
| | **Text book and Reference books:**
5. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
6. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

PCC-CS-403: Formal Language and Automata Theory
Contacts: 3L per week

Credits: 3

Course Outcomes (COs):

After completion of the course, students will be able to:

1. **Design** finite automata to accept a set of strings of a language.
2. For a given language **evaluate** whether the given language is regular or not.
3. **Develop** context free grammars to generate strings of context free language.
4. **Determine** equivalence of languages accepted by Push down Automata and languages generated by context free grammars.
5. **Implement** the hierarchy of formal languages, grammars and machines.
6. **Distinguish** between computability and non-computability and Decidability and undecidability.

Pre-Requisite:

NIL

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Regular languages and finite automata: Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata(NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Context-free languages and pushdown automata: Context-free grammars (CFG) and languages (CFL),Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic push down automata, closure properties of CFLs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Context-sensitive languages: Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turing machines: The basic model for Turing machines (TM), Turing recognizable(recursively enumerable) and Turing-decidable (recursive)languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undecidability: Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice’s theorem, undecidable problems about languages</td>
<td></td>
</tr>
</tbody>
</table>

Text books and reference books:

BSC-CS-401: Biology
Contacts: 2L per week Credits: 2

Course Outcomes (COs):

After completion of the course, students will be able to:

- Demonstrate understanding of core patterns and principles of biology.
- Describe living systems, including their nature, organization and evolution.
- Apply methods of scientific inquiry in biology.
- Describe how human activities affect the living world and the physical environment.
- Describe the flow of energy and matter within and among organisms.
- Explain the historical context of biological discoveries.

Prerequisite:
NIL

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilisation -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelie, ureotelie (e) Habitata- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus.</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>To convey that “Genetics is to biology what Newton’s laws are to Physical Sciences” Mendel’s laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Biomolecules: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.</td>
<td>4</td>
</tr>
<tr>
<td>Page</td>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Enzymes: To convey that without catalysis life would not have existed on earth. Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Metabolism: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoergic reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.</td>
<td></td>
</tr>
</tbody>
</table>

Text book and Reference books:
1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M. L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons
4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

MC-CS-401: Environmental Sciences

Contacts: 2L per week Credits: 0

Course Outcomes (COs):

At the end of this course, students will demonstrate the ability to
- Acquire fundamental knowledge of different aspects of environment and local, regional and global environmental problems.
- Get the information about ecosystem and also about its functions like Food chain, Ecological pyramids etc.
- Obtain the knowledge about the different types of resources like land, water, mineral and energy and also about the effects of environment by the usage of these resources.
- Gain the knowledge about the ecosystem diversity, its values and also about the importance of the endemic species and different techniques involved in its conservation.
- Gain the knowledge about the different types of pollutions and their control technologies, Waste water treatment, Bio medical waste management etc.,
- Acquire the complete information about EIA- Environmental Impact Assessment, Sustainable developmental activities, environmental policies and regulations, awareness among people about protection of wild life, forest and other natural resources.

Prerequisites:
- Basics of Chemistry

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/ Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L) Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L) Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function. (1L) Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. (2L)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem-components types and function. (1L) Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundarban); Food chain [definition and one example of each food chain], Food web. (2L) Biogeochemical Cycle-definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L) Biodiversity-types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity. (2L)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. (2L) River/Lake/ground water pollution:</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L) Lake: Eutrophication [Definition, source and effect]. (1L) Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L) Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L) Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lithosphere; Internal structure of earth, rock and soil (1L) Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).(2L)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18hr Index) ,n Ld.Noise pollution control. (1L)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (2L)</td>
<td></td>
</tr>
</tbody>
</table>

Text book and Reference books:

PCC-CS-491: Object Oriented Programming Lab

Contacts: 3P per week
Credits: 1.5

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Create** multithreaded programs.
2. **Evaluate** the complexity of procedural language by using the concept of polymorphism, inheritance, abstraction, and encapsulation.
3. **Experiment** any real world problem with object oriented approach and formulate a solution for the same.
4. **Implement and apply** object oriented approach to relate to real world problem.
5. **Understand** and develop graphical user interface using AWT.
6. **Recall** the knowledge of event handling mechanism.

Prerequisites:

- Programming for Problem Solving
- Object Oriented Programming & Java

Detailed Content:
- Implement all problems abiding by features of object oriented programming (Abstraction, Encapsulation, Reusability, Data Hiding, Generalization, and Specialization.)
- Familiarization on object oriented approach of programming: use of class, object, and reference.
- Use of constructor, static, final, array, date, access specifiers.
- Familiarization with String, StringBuffer, ArrayList and LinkedList classes.
- Familiarization on Inheritance and Dynamic Method Dispatch.
- Familiarization on Abstract Class, Interface and Package Java Exception Handling.
- Familiarization on Java IO using Scanner, BufferedReader, PrintWriter. File handling in Java.
- Exploring Java multithreading concept.
- Familiarization on Java Applet, AWT Event Handling.
- Basics of Java Swing: Different Layouts, Event Handling.

Text book and Reference books:

3. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH.
4. Core Java For Beginners, R.K Das, VIKAS PUBLISHING.
5. Java How to Program, Deitel and Deitel, 6th Ed. – Pearson.
7. Programming With Java: A Primer, E. Balagurusamy, 3rd Ed., TMH.

PCC-CS-492: Operating System Lab
Contacts: 3P per week Credits: 1.5

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- Demonstrate shell programming which include shell scripts and explaining shell syntax (variables, conditions, control structure, and functional commands).
- Execute programs like, creating a new process, creating orphan process and zombie process, synchronizing parent and child process.
- Analyze synchronization of co-operating processes with semaphore (semctl(), semget(), semop(), set semvalue, del semvalue, semaphore p and semaphore v).
- Adapt concept of signals with sending signals, signal interface, and signal handling.
- Apply POSIX threads using pthread_create, pthread_join and pthread_exit.
- Understand Inter-Process Communication (IPC) with use of pipes, message queue etc.

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shell programming: creating a script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands).</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Process: starting new process, replacing a process image, duplicating a process image, waiting for a process, zombie process.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Signal: signal handling, sending signals, signal interface, signal sets.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Semaphore: programming with semaphores (use functions semctl, semget, semop, set semvalue, del semvalue, semaphore p, semaphore v).</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>POSIX Threads: programming with pthread functions(viz. pthread_create, pthread_join, pthread_exit, pthread_attr_init, pthread_cancel)</td>
<td>3</td>
</tr>
</tbody>
</table>
Inter-process communication: pipes (use functions pipe, popen, pclose), named pipes (FIFOs, accessing FIFO)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1 | Probability Theory:
Introduction to probability concepts, Random experiments, Events, Conditional probability, Independent events, Theorem of Total Probability, Baye’s theorem Sample space |
| 2 | Random variables (RV):
Introduction to Random variables, - One dimensional Random Variables, Discrete and Continuous RV- Density and Distribution function of RV, Expectation, Variance, and its properties, Covariance, and Moments. Moment Generating function
Special Distributions
Binomial and Poisson distributions – Normal distribution, Exponential distributions, Weibull distribution |
| 3 | Correlation and regression |

Text and Reference Books:

1. UNIX Shell Programming by Yashavant Kanetkar, BPB Publication
3. UNIX and Shell Programming by Forouzan & Gilberg

Semester-V

ESC-CS-501: Probability and Statistics

Lecture per week (L – T): 3-0
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Students should be proficient in the application of the laws of logic to mathematical statements.
2. Students should be competent enough to analyze the data based on statistics and probability. This also enables students to make use of data through curve filling and different equations.
3. Prepare students for realization of journal papers outcomes, and expose them to the world of research. Illustrate the current research works and publications of the subjects in different fields adopted by the students as per course curriculum in various journals and literature.
4. Lighten on the latest and modern developments in the research fields. Explain how the ideas those are adopted can be implemented through projects and demonstrate various models, recent project proposals executing the knowledge adopted from the course.
5. An ability to function on multi-disciplinary teams and ability to analyze the local and global impact of computing on individuals, organizations, and society.
6. An understanding of professional, ethical, legal, security and social issues and responsibilities.

Prerequisites:

- Basic Mathematics.

Detailed Content:
Two dimensional random variables, Joint distribution and Joint density functions - Marginal, Conditional Distribution and Density functions. Regression and Correlation. – Partial and Multiple Correlation-Multiple Regression.

| 4 | Test of Significance
Testing of hypothesis – Introduction - Types of errors, critical region, procedure of testing hypothesis.
Large sample tests - Z test for Single Proportion, Difference of Proportion, Single mean and difference of means. Small sample tests - Student’s t-test, F-test - Chi-square test - Goodness of fit - Independence of Attributes | 10 |

| 5 | Design of Experiments
Analysis of variance – One and Two way classifications –
Completely Randomized Design (CRD), Randomized Block Design (RBD), Latin Square Design (LSD) | 4 |

Text book and Reference books:
4. Fundamental of Mathematical Statistics by T Veerarajan, Yes Dee Publishing Pvt Ltd.

PCC-CS-501: Database Management System

Lecture per week (L – T): 3-0 Credits: 3

Course Outcomes (COs):

On completion of the course students will be able to
1. **Describe** the fundamental elements of relational database management systems
2. **Explain** the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
3. **Design** ER-models to represent simple database application scenarios
4. **Convert** the ER-model to relational tables, populate relational database and formulate SQL queries on data.
5. **Improve** the database design by normalization.
6. **Understand** the basic database storage structures and access techniques: file and page organizations, indexing methods including B tree, and hashing.

Prerequisites:
N/A

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
</table>
| 1 | **Database system architecture:** Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML).
Data models: Entity-relationship model, network model, relational | 9 |
Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server.

Relational database design: Domain and data dependency, Armstrong’s axioms, Normal forms, Dependency preservation, Lossless design.

Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.

Storage strategies: Indices, B-trees, hashing.

Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi version and optimistic Concurrency Control schemes, Database recovery.

Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.

Text book and Reference books:

PCC-CS-502: Design and Analysis of Algorithm
Lecture per week (L – T): 3-1 Credits: 4

Course Outcomes (COs):

At the end of the course, the students will be able to:

- **Prove** the correctness and analyse the running time of the basic algorithms for those classic problems in various domains.
- **Apply** the algorithms and design techniques to solve problems.
- **Analyze** the complexities of various problems in different domains.
- **Apply** design and development principles in the construction of software systems of varying complexity.
- **Design** and development principles in the construction of software systems of varying complexity.
- **Adapt** current techniques, skills, and tools necessary for computing practice.

Prerequisites:

- Basics of C programming
Data Structure and Algorithms

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 1 | Models of computation: RAM, TM etc. time and space complexity
Asymptotic Notation Big-O, omega, theta etc.; finding time complexity of well-known algorithms like heapsort, search algorithm etc.
Algorithm Design techniques:
Recursion- Definition, Use, Limitations, Examples: Hanoi problem. Tail Recursion | 7 |
| 2 | Divide and Conquer:
Basic method, use, Examples: Merge sort, Quick Sort, Binary Search,
Dynamic Programming:
Basic method, use, Examples: matrix-chain multiplication, All pair shortest paths, single-source shortest path, Travelling Salesman problem | 8 |
| 3 | Branch and Bound: Basic method, use, Examples: The 15-puzzle problem
Backtracking: Basic method, use, Examples: Eight queens problem, Graph coloring problem, Hamiltonian problem | 6 |
| 4 | Greedy Method:
Basic method, use, Examples: Knapsack problem, Job sequencing with deadlines, minimum spanning tree(Prim’s and Kruskal’s algorithms)
Lower Bound Theory:
Bounds on sorting and sorting techniques using partial and total orders.
Disjoint Set Manipulation:
Set manipulation algorithm like UNION-FIND, union by rank, Path compression | 7 |
| 5 | Properties of graphs and graph traversal algorithms: BFS and DFS
Matrix manipulation algorithms:
Different types of algorithms and solution of simultaneous equations, DFT & FFT algorithm; integer multiplication
Schemes | 6 |
| 6 | Notion of NP-completeness:
P class, NP-hard class, NP-complete class, Circuit Satisfiability problem, Clique Decision Problem.
Approximation algorithms:
Necessity of approximation scheme, performance guarantee, Polynomial time approximation schemes: 0/1 knapsack Problem | 6 |

Text book and Reference books:

1. A.Aho, J.Hopcroft and J.Ullman “The Design and Analysis of algorithms”
4. Goodman: Introduction to Design and Analysis Of Algorithms TMH
6. S.Baase “Computer algorithms”
7. E.Horowitz and Shani “Fundamentals of Computer algorithms”
Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Design and investigate** why network needs flow control and error control techniques.
2. **Evaluate** the performance of the different routing protocol (RIP, OSPF) based on routing cost, convergence rate and complexity to find the shortest path.
3. **Analyze** the pieces of hardware (hub, bridge, switch, router) to make networks more efficient, faster, more secure, easier to use, able to transmit several simultaneous messages, and able to interconnect with other networks.
4. **Demonstrate** different LLC protocols, Internet Protocol, and usage of the IP address and subnet mask to setup a network.
5. **Understand** various techniques (open loop and close loop) used for congestion control and quality of service (traffic scheduling and shaping).
6. **Identify and remember** importance of existing protocols (DNS, DHCP, FTP, WWW, HTTP) running in application layer.

Prerequisites:

- Programming for Problem Solving
- Data Structure and Algorithms
- Computer Organization & Architecture

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Data Link Layer and MAC Sublayer: Flow Control – Stop-n-Wait & Sliding Window Protocol, ARQ Techniques – Stop-n-Wait, Go-Back- N & Selective Repeat, Framing, Bit & Byte Oriented Protocol, HDLC, Point to Point Protocol (PPP), Token Ring, FDDI and Ethernet Protocols, Reservation, Polling, Multiple access protocols - Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, CSMA/CA.</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Network Layer: Internet Protocol (IP), IPv4 vs IPv6, ARP & RARP, IP Addressing – Classful & Classless, Subnetting, VLSM, CIDR. Routing - Techniques, Static, Dynamic & Default Routing, Unicast Routing Protocols - RIP, OSPF, BGP.</td>
<td>5</td>
</tr>
</tbody>
</table>
Text book and Reference books:
5. Internetworking with TCP/IP, vol. 1, 2, 3(4th Ed.) – Comer –Pearson Education/PHI

PCC-CS-504: Cryptography
Lecture per week (L – T): 3-1 Credits: 4

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Formulate** cryptographic algorithms for information security.
2. **Evaluate** different encryption algorithms and modes.
3. **Analyze** security of the in-built cryptosystems.
4. **Apply** principles of public key cryptosystems, hash functions and digital signature.
5. **Remember** fundamental knowledge on finite fields and number theory.
6. **Understand** authentication schemes for identity and membership authorization.

Prerequisites:
- Linear Algebra
- Mathematics I
- Discrete Mathematics

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Security: Introduction to security attacks, Confidentiality, Integrity & Availability – Authentication, Authorization & Non-Repudiation – Introduction to Plain Text, Cipher Text, Encryption and Decryption Techniques, Secure Key, symmetric cipher model, substitution techniques. Caesar cipher, mono-alphabetic cipher, poly-alphabetic cipher, transposition techniques.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Finite fields and number theory: Groups, rings, fields, Euclid’s algorithm, Finite field, polynomial arithmetic, Prime numbers, testing for primality, Chinese remainder theorem, Fermat’s and Euler’s theorem.</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Symmetric Encryption: Block cipher, Stream cipher - Data Encryption Standard (DES) - Cipher Block Chaining (CBC) – Multiple Encryption DES - International Data Encryption Algorithm (IDEA) - Advanced Encryption Standard (AES).</td>
<td>5</td>
</tr>
</tbody>
</table>
Asymmetric Encryption
- symmetric key generation techniques

Digital Signature

Hashing and Message Digests
- Cryptographic Hash Functions - Applications
- Simple hash functions and features for ensuring security – Hash functions based on Cipher Block Chaining - Secure Hash Algorithm (SHA) - Message Digest - MD5.

Message Authentication

Text book and Reference books:

PCC-CS-505: Malware Analysis

Contacts: 2L per week
Credits: 2

Course Outcomes (COs):
At the end of this course, students will demonstrate the ability to
- Possess the skills necessary to carry out independent analysis of modern malware samples using both static and dynamic analysis techniques.
- Identify and analyse various malware types by static, dynamic analysis and reverse engineering.
- Have an intimate understanding of executable formats, Windows internals and APIs, and malware analysis techniques.
- Extract investigative leads from host and network-based indicators associated with a malicious program.
- Apply techniques and concepts to unpack, extract, decrypt, or bypass new anti-analysis techniques in future malware samples.
- Achieve proficiency with industry standard tools including ProcMon, CFF Explorer, ProcExplore, BinText, FileAlyzer, OllyDbg etc

Prerequisite:
NIL

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malware taxonomy - Malware threats - Malware analysis methodologies - Legal</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Static Analysis: Detailed file analysis - Database of file hashes. Identifying file compile date - Identifying packing/obfuscation methods - Strings analysis - File signature analysis - Local and online malware scanning - Identifying file dependencies.

5 Malicious Document Analysis: PDF and Microsoft Office document structures - PDF and office document vulnerabilities - Malware extraction and analysis tools - Analysis of malicious documents

6 Malware Challenges: Virtual environment – Live internet connection – Real, fake, and virtual services – Anti-debug and anti-forensic malware

Text book and Reference books:

PCC-CS-591: Database Management System Lab
Labs per week: 3 Credits: 1.5

Course Outcomes (COs):

At the end of the course the students are able to:
1. Apply the basic concepts of Database Systems and Applications.
2. Define the basics of SQL and construct queries using SQL in database creation and interaction.
3. Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system.
4. Analyze and Select storage and recovery techniques of database system.
5. **Understand** various advanced queries execution such as relational constraints, joins, set operations, aggregate functions, trigger, views and embedded SQL.

6. **Construct** various software to design and build ER Diagrams, UML, Flow chart for related database systems.

Prerequisites:
1. Oracle-SQL
2. Visual Basic 6.0

Detailed Content:

<table>
<thead>
<tr>
<th>Laboratory Experiments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured Query Language</td>
</tr>
<tr>
<td>1. Creating Database</td>
</tr>
<tr>
<td>• Creating a Database</td>
</tr>
<tr>
<td>• Creating a Table</td>
</tr>
<tr>
<td>• Specifying Relational Data Types</td>
</tr>
<tr>
<td>• Specifying Constraints</td>
</tr>
<tr>
<td>• Creating Indexes</td>
</tr>
<tr>
<td>2. Table and Record Handling</td>
</tr>
<tr>
<td>• INSERT statement</td>
</tr>
<tr>
<td>• Using SELECT and INSERT together</td>
</tr>
<tr>
<td>• DELETE, UPDATE, TRUNCATE statements</td>
</tr>
<tr>
<td>• DROP, ALTER statements</td>
</tr>
<tr>
<td>3. Retrieving Data from a Database</td>
</tr>
<tr>
<td>• The SELECT statement</td>
</tr>
<tr>
<td>• Using the WHERE clause</td>
</tr>
<tr>
<td>• Using Logical Operators in the WHERE clause</td>
</tr>
<tr>
<td>• Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING Clause</td>
</tr>
<tr>
<td>• Using Aggregate Functions</td>
</tr>
<tr>
<td>• Combining Tables Using JOINS</td>
</tr>
<tr>
<td>• Subqueries</td>
</tr>
<tr>
<td>4. Database Management</td>
</tr>
<tr>
<td>• Creating Views</td>
</tr>
<tr>
<td>• Creating Column Aliases</td>
</tr>
<tr>
<td>• Creating Database Users</td>
</tr>
<tr>
<td>• Using GRANT and REVOKE</td>
</tr>
<tr>
<td>5. Cursors in Oracle PL / SQL</td>
</tr>
<tr>
<td>6. Writing Oracle PL / SQL Stored Procedures</td>
</tr>
</tbody>
</table>

PCC-CS-592: Design and Analysis of Algorithm Lab

Labs per week:3 Credits: 1.5
Course Outcomes (COs):

On completion of this course, the students are able to:
1. **Solve** problems by applying appropriate algorithms.
2. **Analyze** the efficiency of various algorithms.
3. **Apply** techniques of stacks and queues to solve problems.
4. **Develop** a program that can be solved in many ways using different techniques.
5. **Identify** and evaluate complex problems using principles of mathematics and engineering science.

Prerequisites:
- Basics of C programming
- Data Structure and Algorithms

Lab Experiments List:

Design, develop and implement the specified algorithms for the following problems using C/C++ Language in LINUX environment.
1. Write a C/C++ program to sort the elements by using quick sort method.
2. Write a C/C++ program to sort the elements by using merge sort method.
3. Obtain the Topological ordering of vertices in a given digraph.
4. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra’s algorithm.
5. Implement 0/1 Knapsack problem using Dynamic Programming.
6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal’s algorithm.
7. Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.
8. a. Compute the transitive closure of a given directed graph using Warshall’s algorithm.
b. Implement All-Pairs Shortest Paths Problem using Floyd’s algorithm.
9. a. Print all the nodes reachable from a given starting node in a digraph using BFS method.
b. Check whether a given graph is connected or not using DFS method.
10. Implement N Queen’s problem using Back Tracking

Text Books:

E-Resources:

PCC-CS-593: Data Communication and Networks Lab
Labs per week: 3 Credits: 1.5

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Design** an application to execute command remotely using socket programming.
2. **Evaluate** file transfer application using socket programming.

3. **Analyze** the hardware (hub, bridge, switch, router) to make networks more efficient, faster, more secure, easier to use, able to transmit several simultaneous messages, and able to interconnect with other networks.

4. **Implement** error-control mechanism for data transmission.

5. **Understand** the concepts of NIC installation and configuration.

6. **Remember** to gather network information using socket programming.

Prerequisites:

- Programming for Problem Solving
- Data Structure and Algorithms
- Object Oriented Programming & Java
- Data Communication and Networks

Detailed Content:

1. NIC Installation & Configuration
2. TCP/UDP Socket Programming – Introduction
3. Sockets – Operation, Socket types, Domains, Closing Sockets
4. Client/Server Models - Usage
5. Connection Based Services - Client and Server actions
6. Connectionless Services - Client and Server actions
7. Access Network Database - Host Information, Network Information, Protocol Information
8. Implement Multicasting / Broadcasting socket I/O.
9. Implement ARQ techniques.

Text book and Reference books:

5. Internetworking with TCP/IP, vol. 1, 2, 3(4th Ed.) – Comer – Pearson Education/PHI

Semester-VI

PCC-CS-601: Network Security

Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

After studying this course, students will be able to:

1. **Identify** some of the factors driving the need for network security
2. **Analyze** and classify particular examples of attacks
3. **Assess** the terms vulnerability, threat and attack
4. **Analyze** physical points of vulnerability in simple networks
5. **Compare** and contrast symmetric and asymmetric encryption systems and their vulnerability to attack, and explain the characteristics of hybrid systems
6. Create new security mechanisms

Prerequisites:

1. Computer Network Fundamentals
2. Data Structure and Algorithms
3. Basics of Operating System

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs. / Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Symmetric Key Algorithm - Introduction, Algorithm types & Modes, Overview of Symmetric Key Cryptography, DES(Data Encryption Standard) algorithm, IDEA(International Data Encryption Algorithm) algorithm, RC5 (Rivest Cipher 5) algorithm.</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>Asymmetric Key Algorithm, Digital Signature and RSA - Introduction, Overview of Asymmetric key Cryptography, RSA algorithm, Symmetric & Asymmetric key Cryptography together, Digital Signature, Basic concepts of Message Digest and Hash Function (Algorithms on Message Digest and Hash function not required).</td>
<td>5</td>
</tr>
</tbody>
</table>

Text book and Reference books:

2. “Cryptography and Network Security” by V.K. Jain, Khanna Publishing House,

PCC-CS-602: Ethical Hacking
Lecture per week: 2 Credits: 2

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Formulate** reverse engineering process.
2. **Evaluate** how social engineering can be done by attacker to gain access of useful and sensitive information about confidential data.
3. **Analyze** various types of attacks, attackers and security threats and vulnerabilities present in computer system.
4. **Apply** tools and techniques to face the domain of ethical hacking and ethical responsibilities.
5. **Remember** cryptography and basics of web application attacks.
6. **Understand** fundamentals of ethical hacking and penetration testing.

Prerequisites:

- Operating System
- Data Communication and Networks
- Cryptography

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethical Hacking: Introduction, Networking & Basics, Foot Printing, Google Hacking, Scanning, Windows Hacking, Linux Hacking, Trojans & Backdoors, Virus & Worms.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Proxy & Packet Filtering, Denial of Service, Sniffer, Social Engineering System and Network Vulnerability and Threats to Security, Various types of attack and the various types of attackers in the context of the vulnerabilities associated with computer and information systems and networks Physical Security, Steganography.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Cryptography, Wireless Hacking, Firewall & Honeypots, IDS & IPS, Vulnerability, Penetration Testing, Session Hijacking, Hacking Web Servers, SQL Injection, Cross Site Scripting, Exploit Writing, Buffer Overflow.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Reverse Engineering, Email Hacking, Incident Handling & Response, Bluetooth Hacking, Mobile Phone Hacking Basic ethical hacking tools and usage of these tools in a professional environment. Legal, professional and ethical issues likely to face the domain of ethical hacking. Ethical responsibilities, professional integrity and making appropriate use of the tools and techniques associated with ethical hacking.</td>
<td>7</td>
</tr>
</tbody>
</table>

Text book and Reference books:

PCC-CS-603: Artificial Intelligence

Lecture per week (L): 3
Credits: 3
Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Understand the various searching techniques, constraint satisfaction problem and example problems-game playing techniques.
2. Apply these techniques in applications which involve perception, reasoning and learning.
3. Explain the role of agents and how it is related to environment and the way of evaluating it and how agents can act by establishing goals.
4. Acquire the knowledge of real-world Knowledge representation.
5. Analyse and design a real-world problem for implementation and understand the dynamic behaviour of a system.
6. Use different machine learning techniques to design AI machine and enveloping applications for real world problems.

Prerequisites:

1. Data Structure & Algorithm
2. Probability

Detailed Content:

<table>
<thead>
<tr>
<th>MODULE NO</th>
<th>CONTENT</th>
<th>HOURS/MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Objective, scope and outcome of the course</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge Representation, Problems in representing knowledge, knowledge representation using propositional and predicate logic, logical consequences, syntax and semantics of an expression, semantic Tableau. Forward and backward reasoning. Proof methods, substitution and unification, conversion to clausal form, normal forms, resolution, refutation, deduction, theorem proving, in referencing, monotonic and non-monotonic reasoning. Introduction to prolog.</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Network-based representation and reasoning, Semantic networks, Conceptual Graphs, frames. Description logic (DL), concept language, reasoning using DL. Conceptual dependencies (CD), scripts, reasoning using CD. Introduction to natural language processing.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Adversarial search and Game theory, classification of games, game playing strategies, prisoner's Dilemma. Game playing techniques, minimax procedure, alpha-beta cut-offs. Complexity of alpha-beta search. Automated planning, classical planning problem, forward planning, partial order planning, planning with proposal logic, hierarchical task planning, multiagent planning</td>
<td>7</td>
</tr>
</tbody>
</table>

Total 34

Text/ Reference Books:
2. Introduction to AI & Expert System: Dan W. Patterson, PHI.
3. Artificial Intelligence by Luger (Pearson Education)

HSMC-CS-601: Human Values and Professional Ethics
Contacts: 2L per week Credits: 2

Course Outcomes (COs):

At the end of this course, students will demonstrate the ability to
- Understand Engineering and Technology as social and professional activities.
- Demonstrate the effects of technological growth, crisis of global resources and possible way out.
- Understand knowledge development for ethics in profession.
- Dissect development of professional and human values.
- Explain development of inner core and initiation of lifelong learning and survival process in professional arena.
- Demonstrate development of Moral character and thought of development of the country.

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 1 | Science, Technology and Engineering as knowledge and as Social and Professional Activities
Effects of Technological Growth:
| 2 | *Ethics of Profession:*
 Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics. Whistle blowing and beyond. Case studies. | 8 |
| 3 | *Profession and Human Values:*
 Values Crisis in contemporary society. Nature of values: Value Spectrum of a good life. Psychological values: Integrated personality; mental health. Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution. Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity. Moral and ethical values: Nature of moral judgments; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility. | 10 |

Text book and Reference books:
PEC-CS-601A: Computer Graphics

Contacts: 3L per week Credit: 3

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- **Outline** computer graphics system, display devices and various application areas of graphics.
- **Develop** scan conversion algorithms for line, circle and ellipse with examples.
- **Demonstrate** and **illustrate** 2D and 3D transformation operations such as translation, rotation, scaling, etc.
- **Analyze** and **model** any kind of 3D objects using viewing, clipping and projection techniques.
- **Apply** various curve and surface representation methods such as B-Spline, Bezier, etc.
- **Demonstrate** and **discuss** various hidden surface removal algorithms, and lighting and shading models.

Prerequisites:
- Basic Mathematics
- Design and Analysis of Algorithms

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to computer graphics & graphics systems: Overview of computer graphics, representing pictures, preparing, presenting & interacting with pictures for presentations; Visualization & image processing; RGB color model, direct coding, lookup table; storage tube graphics display, Raster scan display, 3D viewing devices, Plotters, printers, digitizers, Light pens etc.; Active & Passive graphics devices; Computer graphics software.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Scan conversion: Points & lines, Line drawing algorithms; DDA algorithm, Bresenham’s line algorithm, Circle generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood fill algorithm.</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2D transformation & viewing: Basic transformations: translation, rotation, scaling; Matrix representations & homogeneous coordinates, transformations between coordinate systems; reflection shear; Transformation of points, lines, parallel lines, intersecting lines. Viewing pipeline, Window to view port co-ordinate transformation, clipping operations, point clipping, line clipping, clipping circles, polygons & ellipse. Cohen and Sutherland line clipping, Sutherland-Hodgeman Polygon clipping, Cyrus-Beck clipping method.</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3D transformation & viewing: 3D transformations: translation, rotation, scaling & other transformations. Rotation about an arbitrary axis in space, reflection through an arbitrary plane; general parallel projection transformation; clipping, view port clipping, 3D viewing.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Curves: Curve representation, surfaces, designs, Bezier curves, B-spline curves, end conditions for periodic B-spline curves, rational B-spline curves. Hidden surfaces: Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method, the Painter’s algorithm, scan-line algorithm; Hidden line elimination, wire frame</td>
<td>6</td>
</tr>
</tbody>
</table>
methods, fractal - geometry.

6 Color & shading models: Light & color model; interpolative shading model; Texture. 2

Text book and Reference books:

PEC-CS-601B: Internet Technology
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Define the concepts of networking and internet.
2. Explain the features of TCP/IP and Routing Protocol and application of VOIP Technology and Multimedia and Threats.
3. Illustrate the concepts of Web design languages like HTML, Perl, Java Script and java applet and create cookies.
4. Differentiate the concept of Java socket and Java RMI (Client Server Programming).
6. Design a dynamic web page using the concept of Languages.

Prerequisites:
- Knowledge of Programming Language
- Computer Networks

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HTML : Introduction, Editors, Elements, Attributes, Heading, Paragraph. Formatting, Link, Head, Table, List, Block, Layout, CSS.Form, Iframe, Colors, Colormame, Colorvalue. Image Maps :</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Text book and Reference books:

PEC-CS-601 C: IoT Application and Design

Lecture per week: 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
- Understand the application areas of IOT.
- Analyse basic protocols in wireless sensor network.
- Understand building blocks of Internet of Things and characteristics.
- Apply IoT in Industrial and Commercial Building Automation and Real World Design Constraints.
- Design IoT applications in different domain and be able to analyse their performance.
- Create basic IoT applications on embedded platform.

Prerequisites:

- Data communication and Network

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to IoT
Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>IoT & M2M
Machine to Machine, Difference between IoT and M2M, Software define Network</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Network & Communication aspects
Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Challenges in IoT
Design challenges, Development challenges, Security challenges, Other challenges</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Domain specific applications of IoT
Home automation, Industry applications, Surveillance applications, Other IoT applications</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Developing IoTs
Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python</td>
<td>5</td>
</tr>
</tbody>
</table>

Text book and Reference books:

6. Michale Miller, “The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World”, PearsonEducation
8. RMD SundaramShriram, K Vasudevan, Abhishek S Nagarajan,“Internet of Things”,Wiley publication,

PEC-CS-601D: Graph Theory
Lecture per week : 3 Credits: 3

Course Outcomes (COs):
Upon completion of this course, the students should be able to
1. **Understand** the various types of graph Algorithms and graph theory properties.
2. **Analyse** the NP – complete problems.
3. **Distinguish** the features of the various tree and matching algorithms
4. **Appreciate** the applications of digraphs and graph flow.
5. **Understand** the linear programming principles and its conversion.
6. **Apply** suitable graph model and algorithm for solving applications.

Prerequisites:
1. Mathematical proof technique (induction, proof by contradiction)
2. Linear algebra (determinants, eigenvalues).

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction - Graph Terminologies - Types of Graphs - Sub Graph- Multi Graph - Regular Graph - Isomorphism - Isomorphic Graphs - Sub-graph - Euler graph - Hamiltonian Graph - Related Theorems.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Trees -Properties- Distance and Centres - Types - Rooted Tree-- Tree Enumeration- Labeled Tree - Unlabeled Tree - Spanning Tree - Fundamental Circuits- Cut Sets - Properties - Fundamental Circuit and Cut-set- Connectivity- Separability -Related Theorems.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Network Flows - Planar Graph - Representation - Detection - Dual Graph - Geometric and Combinatorial Dual - Related Theorems - Digraph - Properties - Euler Digraph.</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Graph Algorithms- Connectedness and Components- Spanning Tree- Fundamental Circuits-Cut Vertices- Directed Circuits- Shortest Path - Applications overview.</td>
<td>9</td>
</tr>
</tbody>
</table>

Text and reference books:

After studying this course, student will be able to:

1. **Design** learner conversant with the social and intellectual property issues emerging from cyberspace.
2. **Explore** the legal and policy developments in various countries to regulate cyberspace
3. **Develop** the understanding of relationship between commerce and cyberspace
4. **Understand** in depth knowledge of information technology act and legal frame work of right to privacy, data security and data protection.
5. **Remember** various case studies on real time crimes.
6. **Evaluate** the legal implication of cyber crime

Prerequisites:

1. Computer Network Fundamentals
2. Cyber Security and Cyber attacks

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs./Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction of Cybercrime: What is cybercrime? Forgery, Hacking, Software Piracy, Computer Network intrusion [4L]. Category Cybercrime: of how criminals plan attacks, passive attack, Active attacks, cyberstalking. [4L]</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Cybercrime Mobile & Wireless devices: Security challenges posted by mobile devices, cryptographic security for mobile devices, Attacks on mobile/cellphones, Theft, Virus, Hacking, Bluetooth; Different viruses on laptop [8L]</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Tools and Methods used in Cybercrime: Proxy servers, pan word checking, Random checking, Trojan Horses and Backdoors; DOS & DDOS attacks; SQL injection: buffer over flow. [8L]</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Phishing & Identity Theft: Phishing methods, ID Theft; Online identity method. [4L] Cybercrime & Cybersecurity: Legal aspects, Indian laws, IT act, Public key certificate. [4L]</td>
<td>8</td>
</tr>
</tbody>
</table>

Text book and Reference books:

1. Cyber security by Nina Gobole & Sunit Belapune; Wiley India.
2. Information Security & Cyber laws, Gupta & Gupta, Khanna Publishing House

OEC-CS-601B: Embedded System

Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to

- **Acquire** a basic knowledge about fundamentals of microcontrollers
- **Define** programming and system control to perform a specific task.
- **Design** devices and buses used in embedded networking
- **Develop** programming skills in embedded systems for various applications.
- **Experiment** about basic concepts of circuit emulators.
- **Discuss** about Life cycle of embedded design and its testing.

Prerequisites:
Basic electronics.
Digital electronics.
Microprocessors & Microcontrollers
C programming.

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction-defining Real time systems, Embedded Real Time Systems, Special Characteristics of real time systems, a brief evolutionary history. Hardware Architectures of Real Time systems.</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Software architectures (concepts of interrupt driven activation, need for real time monitor, pseudo parallelism), meeting of deadlines & real time constraints</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Overview of WARD & MELLOR Methodology: Ward & Mellor Life Cycle, the essential model step, the implementation model, real time extensions of DFD</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Real time languages: overview of ADA/Java Extension</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Real time Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>System Development Methodologies</td>
<td>4</td>
</tr>
</tbody>
</table>

Text/ Reference Books:

4. “Real time Systems”, J. W. S. Liu, Pearson
6. “An Embedded System Primer” David E. Simon; Addison-Wesley Pub

OEC-CS-601C: Human Resource Management
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Demonstrate** an understanding of key terms, theories/concepts and practices within the field of HRM
2. **Design** competence in development and problem-solving in the area of HRM
3. **Formulate** innovative solutions to problems in the fields of HRM
4. **Identify** and appreciate the significance of the ethical issues in HR
5. **Analyze** the problem and issues related to human resources in an organization.
6. **Integrate** the understanding of various HR concepts along with the domain concept in order to take correct business decisions.

Prerequisites:

1. Interpersonal and soft skill
2. English communication

Detailed Content:
<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HRD-Macro Perspective: HRD Concept, Origin and Need, HRD as a Total System; Approaches to HRD; Human Development and HRD; HRD at Macro and Micro Climate</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>HRD–Micro Perspective: Areas of HRD; HRD Interventions Performance Appraisal, Potential Appraisal, Feedback and Performance Coaching, Training, Career Planning, OD or Systems Development, Rewards, Employee Welfare and Quality of Work Life and Human Resource Information; Staffing for HRD: Roles of HR Developer; Physical and Financial Resources for HRD; HR Accounting; HRD Audit, Strategic HRD</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Instructional Technology for HRD Learning and HRD; Models and Curriculum; Principles of Learning; Group and Individual Learning; Transactional Analysis; Assessment Centre; Behaviour Modeling and Self Directed Learning.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Human Resource Training and Development: Concept and Importance; Assessing Training Needs; Designing and Evaluating T&D Programmes; Role, Responsibilities and challenges to Training Managers.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Training Methods: Training with in Industry (TWI): On the Job & Off the Job Training; Management Development: Lecture Method; Role Play; In-basket Exercise; Simulation; Vestibule Training; Management Games; Case Study; Programmed Instruction; Team Development; Sensitivity Training; Globalization challenges and Strategies of Training; Program, Review on T&D Programmes in India</td>
<td>7</td>
</tr>
</tbody>
</table>

Text book and Reference books:

OEC-CS-601D: Economic Policies in India
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):
After studying this course, student will be able to:
- Understand comprehensive of Indian Economy.
- Analyse govt policies and programs
- Formulate the links between household behaviour and the economic models of demand.
- Understand govt policies and programs
- Remember how planning and infrastructure support can develop an economy.
- Apply their knowledge in policy formulation

Prerequisites:
- Fundamental of Economics
<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs. / Unit</th>
</tr>
</thead>
</table>
| 1. | **Basic Structure of the Indian Economy**
| 2. | **National Income, Poverty and Unemployment**
| 3. | **Planning and Public Policy**
| 4. | **Agricultural and Industrial Sectors**

Text book and Reference books:

PCC-CS-691: Cryptography & Network Security Lab

Labs per week (P): 3
Credits: 1.5

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. **Design** various networking protocols.
2. **Evaluate** security mechanisms using rigorous approaches by key ciphers and hash functions.
3. **Analyze** the vulnerabilities in any computing system and hence be able to design a security solution.
4. **Apply** symmetric and asymmetric key algorithms for cryptography.
5. **Remember** the concept and application of public key cryptography.
6. **Understand** the application of firewall, SSH for network security.

Prerequisites:

- Programming for Problem Solving
- Object-Oriented Programming
- Operating System
- Data Communication and Networks
- Cryptography
- Network Security

Detailed Content:

1) Implementation of Caesar Cipher, Substitution cipher and Hill Cipher technique
2) Implementation of the Play fair Cipher
3) Implementation of the Pure Transposition Cipher
4) Implementation of Euclid Algorithm.
5) Implementation of DES Encryption and Decryption
6) Implementation of the AES Encryption and decryption
7) Implementation of RSA Encryption Algorithm
8) Calculation of message digest of text using SHA-1, MD5 algorithms.
9) Implementation of Diffie-Hellman Key Exchange mechanism.
10) Configure SSH (Secure Shell) and send/receive a file on this connection to verify the correctness of this system using the configured parameters.
11) Configure a firewall to block the following for 5 minutes and verify the correctness of this system using the configured parameters:
 (a) Two neighborhood IP addresses on your LAN (b) All ICMP requests
12) Configure a mail agent to support Digital Certificates, send a mail and verify the correctness of this system using the configured parameters.

Textbook and Reference Books:
6. Data Communications and Networking- by Behourz A Forouzan.

PCC-CS-692: Artificial Intelligence Lab

Contacts: 3P per week
Credits: 1.5

Course Outcomes (COs):
At the end of the course, the students will be able to:

1. Demonstrate the applications of AI and agent-based approach to AI.
2. Obtain first-order predicate calculus, logical reasoning and problem solving using Python language.
3. Study and discuss various techniques and algorithms of AI used in general problem solving, optimization problems, constraint satisfaction problems, and game programming.
4. Familiarize students with various sub-areas of AI, such as expert systems, natural language processing and machine learning.
5. Study and discuss various techniques and algorithms of AI used in Genetic Algorithm.
6. Dissect various techniques and algorithms of AI used in Expert System.

Prerequisites:
- Data Structures
- Probability
- Python Programming Language

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1 | Anaconda:
Learn how to use Anaconda to manage packages and environments for use with Python. |
| 2 | Jupyter Notebooks:
Learn how to use Jupyter Notebooks to create documents combining code, text, images, and more. |
| 3 | Numpy Basics:
• Learn the value of NumPy and how to use it to manipulate data for AI problems.
• Mini-Project: Use NumPy to mean normalize anndarray and separate it into several smaller ndarrays. |
| 4 | Pandas Basics:
• Learn to use Pandas to load and process data for machine learning problems.
• Mini-Project: Use Pandas to plot and get statistics from stock data |
| 5 | Matplotlib Basics:
Learn how to use Matplotlib to choose appropriate plots for one and two variables based on the types of data you have. |

Text/Reference Books:

1. Machine Learning for Absolute Beginners: A Plain English Introduction Author: Oliver Theobald Publisher — Scatterplot Press
3. Machine Learning (in Python and R) For Dummies Author: John Paul Mueller and Luca Massaron
4. Machine Learning in Action Author: Peter Harrington Publisher — Manning Publications

Semester-VII

PEC-CS-701A: Cloud Computing

Lectures per week (L): 3
Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:

1. Discuss the core concepts of cloud computing paradigm.
2. Analyze services, systems, platforms, frameworks to support cloud computing.
3. Illustrate the concepts of cloud storage system services.
4. Assess virtualization technology services in open source cloud computing environment.
5. Understand data center technology from industry centric perspective.
6. Identify cloud security issues to demonstrate real time applications.

Prerequisites:
1. Basic knowledge of Programming.
2. DBMS
4. Operating System.

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of Cloud Computing and Basics: Defining a Cloud, Cloud types- NIST Model, Cloud Cube model, Deployment models (Public, Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/service providers, models – Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS – Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)</td>
<td>9</td>
</tr>
</tbody>
</table>
| 3 | Cloud Infrastructure:
Cloud Management: An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, Monitoring of an entire cloud computing deployment stack – an overview with mention of some products, Lifecycle management of cloud services (six stages of lifecycle).
Concepts of Cloud Security: Cloud security concerns, Security boundary, Security service boundary Overview of security mapping Security of data: Brokered cloud storage access, Storage location and tenancy, encryption, and auditing and compliance Identity management (awareness of Identity protocol standards) | 7 |
| 4 | Concepts of Services and Applications:
Service Oriented Architecture: Basic concepts of message-based transactions, Protocol stack for an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs, Applications in the Cloud: Concepts of cloud transactions, functionality mapping, Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs Cloud-based Storage: Cloud storage definition – Manned and Unmanned Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail, concepts of Syndication services | 8 |

Text book and Reference books:

6. Cloud Computing – Second Edition by Dr. Kumar Saurabh, Wiley India

PEC-CS-701B: Software Engineering
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Describe the importance of software engineering lifecycle models in the development of software and apply the knowledge to the solution of complex engineering problems.
2. Analyze the requirements and develop SRS documents following the principles in modeling software based on real life applications.
3. Design and develop software which adheres to the standard software design guideline & benchmarks.
4. Create and apply appropriate techniques for software testing.
5. Demonstrate knowledge and understanding of engineering and management principles for software projects management.
6. Understand software matrices like size, effort and cost estimation, and software quality metrics.

Prerequisites:

- Basic knowledge of programming

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Structured Analysis, Context diagram and DFD, Physical and Logical DFDs, Data Modelling, ER diagrams, Software Requirements Specification.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Design Aspects: Top-Down and Bottom-Up design; Decision tree, decision table and structured English, Structure chart, Transform analysis Functional vs. Object-Oriented approach.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Unified Modeling Language Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Coding & Documentation - Structured Programming, Modular Programming, Module Relationship- Coupling, Cohesion, OO Programming, Information Hiding, Reuse, System Documentation.</td>
<td>5</td>
</tr>
</tbody>
</table>

Text and Reference books:

1. Software Engineering: A practitioner’s approach - Pressman (TMH)
2. Software Engineering- Pankaj Jalote (Wiley-India)
3. Software Engineering- Rajib Mall (PHI)
4. Software Engineering - Agarwal and Agarwal (PHI)

PEC-CS-701C: Steganography and Watermarking
Lecture per week: 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Understand the History and importance of watermarking and steganography.
2. Describe Steganography and Watermarking fundamental concepts principles.
3. Analyse Applications and properties of watermarking and steganography.
4. Demonstrate Models and algorithms of watermarking.
5. Design and implement efficient data hiding methods.
6. **Identify** theoretic foundations of steganography and steganalysis.

Prerequisites:
- Cryptography

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 1 | **Introduction**
| 2 | **Watermarking With Side Information & Analyzing Errors:**
| 3 | **Perceptual Models:**
Evaluating perceptual impact – General form of a perceptual model – Examples of perceptual models – Robust watermarking approaches – Redundant Embedding, Spread Spectrum Coding, Embedding in Perceptually significant coefficients | 6 |
| 4 | **Watermark Security & Authentication:**
| 5 | **Steganography:**
Steganography communication – Notation and terminology – Information theoretic foundations of steganography – Practical steganographic methods – Minimizing the embedding impact – Steganalysis | 6 |

Text book and Reference books:

PEC-CS-701D: Digital Forensics

Lecture per week: 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Formulate** and Judges a crime from a given case study.
2. Evaluate the importance of various digital forensic tools for analysis to achieve adequate perspectives of digital forensic investigation in various applications/devices like Windows/Unix system.

3. Analyze the methodology of incident response and various security issues in ICT world, and identify digital forensic tools for data collection.

4. Apply the method to generate legal evidence and supporting investigation reports and will also be able to use various digital forensic tools.

5. Understand the need of digital forensic and role of digital evidences.

6. Define or Remember the concept of Forensics and its associates.

Prerequisites:

- Malware Analysis
- Operating System
- Cyber Law and Cyber Crime

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Forensics Science: Forensics science, computer forensics, and digital forensics. Computer Crime: Criminalistics as it relates to the investigative process, analysis of cyber-criminalistics area, holistic approach to cyber-forensics.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cyber Crime Scene Analysis: Discuss the various court orders etc., methods to search and seizure electronic evidence, retrieved and un-retrieved communications, Discuss the importance of understanding what court documents would be required for a criminal investigation.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Evidence Management & Presentation: Create and manage shared folders using operating system, importance of the forensic mindset, define the workload of law enforcement, explain what the normal case would look like, define who should be notified of a crime, parts of gathering evidence, Define and apply probable cause.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Computer Forensics: Prepare a case, begin an investigation, understand computer forensics workstations and software, conduct an investigation, and complete a case, Critique a case, Network Forensics: open-source security tools for network forensic analysis, requirements for preservation of network data.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text book and Reference books:

PEC-CS-702A: Block chain and Cryptocurrency
Lecture per week (L): 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Design, build** and deploy a distributed application.
2. **Evaluate** security, privacy and efficiency of a given block chain system.
3. **Analyze** functionality of cryptocurrency system.
4. **Apply** block chain in various domains.
5. **Remember** cryptography and consensus algorithms.
6. **Understand** the history, types and applications of block chain.

Prerequisites:

- Operating System
- Data Communication and Networks
- Cryptography
- Network Security

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics: Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Blockchain: Introduction, Advantage over conventional distributed database, Block chain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Block chain application, Soft & Hard Fork, Private and Public block chain.</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Cryptocurrency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Block chain.</td>
<td>6</td>
</tr>
</tbody>
</table>

Text book and Reference books:

3. Wattenhofer, the Science of the Block chain.

PEC-CS-702B: Social Network Analysis

Lecture per week (L): 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Understand the concept of semantic web and related applications.
2. Learn knowledge representation using ontology.
4. Learn visualization of social networks.
5. Develop semantic web related applications.

Prerequisites:
- Basic Mathematics
- Probability and Statistics

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Objective, scope and outcome of the course.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Semantic Web: Limitations of current Web - Development of Semantic Web - Emergence of the Social Web - Social Network analysis: Development of Social Network Analysis - Key concepts and measures in network analysis - Electronic sources for network analysis: Electronic discussion networks, Blogs and online communities - Web-based networks - Applications of Social Network Analysis.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Understanding and predicting human behaviour for social communities - User data management - Inference and Distribution - Enabling new human experiences - Reality mining - Context - Awareness - Privacy in online social networks - Trust in online environment - Trust models based on subjective logic - Trust network analysis - Trust transitivity analysis - Combining trust and reputation - Trust</td>
<td>6</td>
</tr>
</tbody>
</table>
derivation based on trust comparisons - Attack spectrum and countermeasures.

Graph theory
- Centrality
- Clustering
- Node-Edge Diagrams
- Matrix representation
- Visualizing online social networks
- Visualizing social networks with matrix-based representations
- Matrix and Node-Link Diagrams
- Hybrid representations
- Applications
- Cover networks
- Community welfare
- Collaboration networks
- Co-Citation networks.

Text/ References Books:

PEC-CS-702C: Advanced Computer Architecture

Contacts: 3L per week
Credits: 3

Course Outcomes:
At the end of this course, students will demonstrate the ability to

- **Explain** various parameters to measure the performance of a processor.
- **Demonstrate** the parallel computing concepts and **compare** parallel computing with sequential computing.
- **Explain** the pipelining technique and its related issues.
- **Demonstrate** the vector processing, array processors and multiprocessors.
- **Outline** and **design** various types of interconnection networks for parallel computers.
- **Dissect** different techniques required to improve the performances of cache memory and main memory.

Prerequisites:
Computer Organization & Architecture

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design, measuring and reporting performance.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards, techniques for handling hazards, Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super-pipelined and VLIW processor architectures. Array and vector processors.</td>
<td>6</td>
</tr>
</tbody>
</table>
Non von Neumann architectures: data flow computers, reduction computer architectures, systolic architectures.

Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, mapping and management techniques, memory replacement policies.

Text book and Reference books:
1. Computer Architecture and Parallel Processing by Hwang and Briggs (Mc-Graw Hill)
3. Computer Architecture: A Qualitative Approach by Hennesey & Patterson (Morgan Kaufman)

PEC CS-702D: Big Data Analytics
Lecture per week: 3 Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Understand the concept of data management and evolution of Big Data.
2. Understand and implement various big data technology foundations.
3. Apply the fundamentals of Hadoop ecosystem and its components for data analysis.
4. Analyse the optimization techniques in data bases.
5. Analyse the storage techniques in data bases.
6. Explore the understanding of text, sentiment analytics.

Prerequisites:
- Database Management System
- C/C++ or Java in Linux
- Data Structures and Algorithms

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Big Data and Hadoop</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Types of Digital Data, Introduction to Big Data, Big Data Analytics,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of Hadoop, Apache Hadoop, Analysing Data with Unix tools,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Big Data Strategy, Introduction to Infosphere BigInsights and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Big Sheets</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HDFS (Hadoop Distributed File System)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>system interfaces, Data flow, Data Ingest with Flume and Scoop and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hadoop archives, Hadoop I/O: Compression, Serialization, Avro and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File-Based Data structures.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Map Reduce</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort, Task Execution, Map Reduce Types and Formats, Map Reduce Features.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hadoop Eco System</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Pig: Introduction to PIG, Execution Modes of Pig, Comparison of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processing operators.</td>
<td></td>
</tr>
</tbody>
</table>
Text book and Reference books:

OEC-CS-701A: Natural Language Processing
Contacts: 3L per week Credits: 3

Course Outcomes (COs):
Upon completion of the course, the students will be able to:
1. Justify the various steps necessary for processing natural language
2. Suggest appropriate lexical and parsing techniques for a given natural language
3. Apply appropriate statistical models for a given natural language application
4. Modify existing algorithms to suit any natural language for processing
5. Recommend appropriate pre-processing steps essential for the various applications involving natural language processing.
6. Design applications involving natural language

Prerequisites:
- Linear algebra
- Probability and Statistics
- Artificial Intelligence
- Programming in any high-level language, preferably Python

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regular Expressions and Automata (Recap) [2L]</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Introduction to NLP, Regular Expression, Finite State Automata</td>
<td></td>
</tr>
<tr>
<td>Tokenization [5L]</td>
<td>Word Tokenization, Normalization, Sentence Segmentation, Named Entity Recognition, Multi Word Extraction, Spell Checking - Bayesian Approach, Minimum Edit Distance</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Morphology [4L]</td>
<td>Morphology - Inflectional and Derivational Morphology, Finite State Morphological Parsing, The Lexicon and Morphotactics, Morphological Parsing with Finite State Transducers, Orthographic Rules and Finite State Transducers, Porter Stemmer</td>
<td></td>
</tr>
</tbody>
</table>

2 **Language Modeling [4L]**
- Introduction to N-grams, Chain Rule, Smoothing - Add-One Smoothing, Witten-Bell Discounting; Backoff, Deleted Interpolation, N-grams for Spelling and Word Prediction, Evaluation of language models.

3 **Text Classification [4L]**
- Text Classification, Naïve Bayes’ Text Classification, Evaluation, Sentiment Analysis - Opinion Mining and Emotion Analysis, Resources and Techniques

4 **Computational Lexical Semantics [4L]**
- Introduction to Lexical Semantics - Homonymy, Polysemy, Synonymy, Thesaurus - WordNet, Computational Lexical Semantics - Thesaurus based and Distributional Word Similarity

5 **Information Retrieval [5L]**
- Boolean Retrieval, Term-document incidence, The Inverted Index, Query Optimization, Phrase Queries, Ranked Retrieval - Term Frequency - Inverse Document Frequency based ranking, Zone Indexing, Query term proximity, Cosine ranking, Combining different features for ranking, Search Engine Evaluation, Relevance Feedback

Text Books and References:
1. Speech and Language Processing, Jurafsky and Martin, Pearson Education
2. Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press

OEC-CS-701B: Soft Skill and Interpersonal Communication
Lecture per week: 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Develop effective communication skills (spoken and written).
2. Develop effective presentation skills.
3. Develop all-round personalities with a mature outlook to function effectively in different circumstances.
4. Develop broad career plans, evaluate the employment market, identify the organizations to get good placement, match the job requirements and skill sets.
5. Improve self-confidence.
6. Become more effective individual through goal/target setting, self-motivation and practicing creative thinking.

Prerequisites:
- English Grammar

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An Introduction – Definition and Significance of Soft Skills; Process, Importance and Measurement of Soft Skill Development. Inter personal relations; communication models, process and barriers; team communication; developing interpersonal relationships through effective communication; listening skills; essential formal writing skills; corporate communication styles – assertion, persuasion, negotiation</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>SWOT & Creative Thinking Discovering the Self; Setting Goals; Beliefs, Values, Attitude, Virtue. Developing Positive Thinking and Attitude; Driving out Negativity; Meaning and Theories of Motivation; Enhancing Motivation Levels.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Non-Verbal Communication & Personality Development Importance and Elements; Body Language. Concept, Essentials Meaning, Nature, Features, Stages, Models; Learning Skills; Adaptability Skills.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Business Etiquette & Team Work Concept of Teams; Building effective teams; Concept of Leadership and honing Leadership skills. Meaning, Nature, Features, Stages, Models; Learning Skills; Adaptability Skills</td>
<td>6</td>
</tr>
</tbody>
</table>

Text book and Reference books:

2. Effective Communication and Soft Skills, Nitin Bhatnagar, Pearson Education India, 2011

OEC-CS-701C: Digital Signal Processing

Lecture per week (L): 3
Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Design linear discrete-time systems and filters and analyse their behaviour.
2. Represent continuous-time signals and linear systems in discrete time, so that such signals can be recovered in continuous time when necessary.
3. Compute approximations to Fourier transforms of continuous-time signals with finite discrete time methods.
4. Understand the analytical tools such as Fourier transforms, Discrete Fourier transforms, Fast Fourier Transforms and Z-Transforms required for digital signal processing.
5. Design and realize various digital filters for digital signal processing.
6. Understand the applications of DSP in speech processing and spectrum analysis.

Prerequisites:
- Digital Electronics

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Objective, scope and outcome of the course.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Discrete-time signals: Concept of discrete-time signal, basic idea of sampling and reconstruction of signal, sampling theorem, sequences – periodic, energy, power, unit-sample, unit-step, unit-ramp, real & complex exponentials, arithmetic operations on sequences.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>LTI Systems: Definition, representation, impulse response, derivation for the output sequence, concept of convolution, graphical, analytical and overlap-add methods to compute convolution supported with examples and exercises, properties of convolution, interconnections of LTI systems with physical interpretations, stability and causality conditions, recursive and non-recursive systems.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Z-Transform: Definition, mapping between s-plane and z-plane, unit circle, convergence and ROC, properties of Z-transform, Z-transform on sequences with examples and exercises, characteristic families of signals along with ROCs, convolution, correlation and multiplication using Z-transform, initial value theorem, Perseval’s relation, inverse Z-transform by contour integration, power series & partial-fraction expansions with examples and exercises.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Discrete Fourier Transform: Concept and relations for DFT/IDFT, Twiddle factors and their properties, computational burden on direct DFT, DFT/IDFT as linear transformations, DFT/IDFT matrices, computation of DFT/IDFT by matrix method, multiplication of DFTs, circular convolution, computation of circular convolution by graphical, DFT/IDFT and matrix methods, linear filtering using DFT, aliasing error, filtering of long data sequences – Overlap-Save and Overlap-Add methods with examples and exercises.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Filter Design: Basic concepts of IIR and FIR filters, difference equations, design of Butterworth IIR analog filter using impulse invariant and bilinear transforms, design of linear phase FIR</td>
<td>5</td>
</tr>
</tbody>
</table>
filters, no. of taps, rectangular, Hamming and Blackman windows.

| 5 | Digital Signal Processor:
Elementary idea about the architecture and important instruction sets of TMS320C 5416/6713 processor, writing of small programs in Assembly Language.
FPGA:
Architecture, different sub-systems, design flow for DSP system design, mapping of DSP algorithms onto FPGA.	5

TOTAL 30

Text and reference books:

OEC-CS-701D: Machine Learning

Lecture per week: 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Develop** an appreciation for what is involved in learning models from data.
2. **Understand** a wide variety of learning algorithms.
3. **Understand** how to evaluate models generated from data.
4. **Apply** the algorithms to a real problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
5. **Understand** the foundation of generative models.

Prerequisites:

- Design and Analysis of Algorithm
- Probability and Statistics

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| | **Introduction to Machine Learning**
Basic of Training and Testing Phase
Training and testing data, Over fitting and Under fitting | 4 |
| 2 | **Feature Selection Techniques**
Filter Methods- Information gain, Chi-Square test, Correlation and coefficient.
Wrapper methods- Recursive feature elimination, Genetic Algorithm. Embedded method- Decision trees | 3 |
Principal Component Analysis (PCA)

3

Regression Analysis

4

Classification
- Binary vs Multiclass Classification, K Nearest Neighbor (kNN), Conditional Probability, Bayes Theorem, Naive Bayes Classifier.

5

Clustering
- K-means Clustering, DBSCAN, Hierarchical Clustering: Agglomerative Clustering and Divisive Clustering.

6

Ensemble Learning

7

Gradient Descent Algorithm, Introduction of Back Propagation Algorithm. Artificial Neural Network, Recurrent Neural Network (RNN)

<table>
<thead>
<tr>
<th>#</th>
<th>Text book and Reference books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Saikat Dutt, Subramanian Chandramouli, Machine Learning, Pearson Education.</td>
</tr>
<tr>
<td>4.</td>
<td>Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From Theory To Algorithms, Cambridge University Press.</td>
</tr>
</tbody>
</table>

HSMC-CS-701: Project Management and Entrepreneurship

| Contacts: 2L per week | Credits: 2 |

Course Outcomes (COs):

Upon completion of this course, the students will be able to:
- **Examine** role of entrepreneur in economic development.
- **Describe** the steps to establish an enterprise.
- **Compare** and classify types of entrepreneurs.
- **Explain** project Identification and formulation.
- **Define** project evaluation.
- **Evaluate** the entrepreneurial support in India

Prerequisites:
- Software Engineering

Detailed Content:
<table>
<thead>
<tr>
<th>Unit</th>
<th>Contents</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Entrepreneurship Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective, and mitigation of risks</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Entrepreneurship – An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Entrepreneurial Motivation: Design Thinking - Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship – Theory of McClelland, Harvesting Strategies</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India’s efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Applications and Project Reports Preparation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Contents</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Project Management: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle - Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Project Monitoring and Control – Role of Project Manager, MIS in Project Monitoring, Project Audit</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Case Studies with Hands-on Training on MS-Project</td>
<td></td>
</tr>
</tbody>
</table>

Text Books and Reference Books:
1. Business, Entrepreneurship and Management: Rao, V.S.P.; Vikas
2. Entrepreneurship: Roy Rajeev; OUP.
3. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan

Semester-VIII

PEC-CS-801A: Quantum Computing
Lecture per week (L): 3 Credits: 3
Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Explain the working of a Quantum Computing program, its architecture and program model.
2. Develop quantum logic gate circuits.
3. Design different mathematical foundation for quantum computing.
4. Develop quantum computing algorithm.
5. Program quantum algorithm on major toolkits.
6. Find different quantum computational complexity.

Prerequisites:
- Data Structure and Algorithm
- Programming in Python/C#

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Quantum Computing: Motivation for studying Quantum Computing Major players in the industry (IBM, Microsoft, Rigetti, D-Wave etc.), Origin of Quantum Computing Overview of major concepts in Quantum Computing: Qubits and multi-qubits states, Bracket notation. Bloch Sphere representation, Quantum Superposition, Quantum Entanglement</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Math Foundation for Quantum Computing: Matrix Algebra: basis vectors and orthogonality, inner product and Hilbert spaces, matrices and tensors, unitary operators and projectors, Dirac notation, Eigen values and Eigen vectors</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Building Blocks for Quantum Program: Architecture of a Quantum Computing platform Details of q-bit system of information representation: Block Sphere, Multi-qubits States, Quantum superposition of qubits (valid and invalid superposition), Quantum Entanglement, Useful states from quantum algorithmic perceptive e.g. Bell State, Operation on qubits: Measuring and transforming using gates. Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controlled gates, Ising, Deutsch, swap etc. Programming model for a Quantum Computing Program: Steps performed on classical computer, Steps performed on Quantum Computer, Moving data between bits and qubits</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Quantum Algorithms: Basic techniques exploited by quantum algorithms: Amplitude amplification, Quantum Fourier Transform, Phase Kick-back, Quantum Phase estimation, Quantum Walks. Major Algorithms: Shor’s Algorithm, Grover’s Algorithm, Deutsch’s Algorithm, Deutsch -Jozsa Algorithm. OSS Toolkits for implementing Quantum program: IBM quantum experience Microsoft Q: Rigetti PyQuil (QPU/QVM)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Quantum Computational Complexity and Error Correction: Computational complexity, Black-box model, Lower bounds for searching general, Black-box lower bounds, Polynomial method, Block sensitivity, Adversary methods, Classical</td>
<td>7</td>
</tr>
</tbody>
</table>
error correction, Classical three-bit code, Fault tolerance, Quantum error correction
Three- and nine-qubit quantum codes, Fault-tolerant quantum computation.

Text book and Reference books:
3. IBM Experience:
 https://quantumexperience.ng.bluemix.net
4. Microsoft Quantum Development Kit:
5. Forest SDK PyQuil:

PEC-CS-801B: Information Theory and Coding
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Apply various source coding techniques.
2. Design the channel performance using information theory.
3. Comprehend various error control code properties
4. Apply linear block codes for error detection and correction
5. Apply convolution codes for performance analysis & cyclic codes for error detection and correction.
6. Design BCH & RS codes for channel performance improvement against burst errors.

Prerequisites:
1. Basic Mathematics
2. Probability and Statistics

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Objective, scope and outcome of the course.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Source Coding</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Uncertainty and information, average mutual information and entropy, information measures for continuous random variables, source coding theorem, Huffman codes.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Channel Capacity And Coding</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Channel models, channel capacity, channel coding, information capacity theorem, The Shannon limit.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Linear And Block Codes For Error Correction</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Matrix description of linear block codes, equivalent codes, parity check matrix, decoding of a linear block code, perfect codes, Hamming codes.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cyclic Codes</td>
<td>5</td>
</tr>
</tbody>
</table>
Polynomials, division algorithm for polynomials, a method for generating cyclic codes, matrix description of cyclic codes, Golay codes.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 6 | BCH Codes
Primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, examples of BCH codes. | 5 |
| 7 | Convolutional Codes
Tree codes, trellis codes, polynomial description of convolutional codes, distance notions for convolutional codes, the generating function, matrix representation of convolutional codes, decoding of convolutional codes, distance and performance bounds for convolutional codes, examples of convolutional codes, Turbo codes, Turbo decoding. | 5 |

Total 31

Text and Reference Books:

PEC-CS-801C: Cyber Security in Block chain Technology
Lecture per week (L): 3
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Understand how blockchain systems (mainly Bitcoin and Ethereum) work
2. Design, build, and deploy smart contracts and distributed applications
3. Integrate ideas from blockchain technology into their own projects
4. Design, develop, test and evaluate secure software.
5. Develop policies and procedures to manage enterprise security risks.
6. Learn and analyse various private-key and public-key cryptography algorithms

Prerequisites:

1. Computer Networks
3. Block Chain and Crypto currency.
4. Design and analysis of Algorithm

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>PUBLIC KEY ENCRYPTION</td>
</tr>
<tr>
<td>5</td>
<td>CRYPTOGRAPHIC FUNDAMENTALS</td>
</tr>
<tr>
<td>6</td>
<td>BIT COIN</td>
</tr>
<tr>
<td>7</td>
<td>ETHEREUM</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Text/Reference Books:

PEC-CS-801D: Bioinformatics
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Design basic algorithms used in Pairwise and Multiple alignments.
2. Understand the methodologies used for database searching, and determining the accuracies of database search.
3. Application of probabilistic model to determine important patterns.
4. Prediction of structure from sequence and subsequently testing the accuracy of predicted structures.
5. Determine the protein function from sequence through analyzing data.
6. Analysis and development of models for better interpretation of biological data to extract knowledge.
Prerequisites:
- Biological Science
- Basics of Data Structure and Programming

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 1 | Introduction to Bioinformatics
A word on Bioinformatics, Introduction, Branches of Bioinformatics, Aims of Bioinformatics, Scope/research areas of bioinformatics | 5 |
| 2 | Sequence and molecular file form and ats, Introduction, Sequence file formats, Sequence conversion tools, Molecular file formats, Molecular file format conversion Databases in bioinformatics & introduction: - Introduction, Biological databases, Classification schema of biological databases, Biological database retrieval system Biological sequence databases, National Centre for biotechnology information (NCBI), Introduction, Tools and databases of NCBI, Database retrieval tool, Sequence submission to NCBI, BLAST, PSI-BLAST, RPS-BLAST, Specialized tools, Nucleotide database, Literature database, Protein database, Gene expression database, GEO, Structural database, Chemical database, Other databases, EMBL Nucleotide Sequence Database, Introduction, Sequence retrieval, Sequence submission at EMBL, Resources of EMBL, Biological annotation and data curation, Sequence. | 8 |
| 3 | Introduction, Concept of alignment, Scoring Matrices, PAM, BLOSUM, Alignment of pairs of sequences, Alignment algorithms, Heuristic methods, Multiple sequence Alignment (MSA) Gene prediction methods: principles and challenges, Introduction, Biological overview, What is gene prediction? Computational methods of gene prediction, Combination of two methods, Why is gene prediction difficult. | 7 |
| 4 | Molecular Phylogeny Introduction, Phenotypic phylogeny and molecular phylogeny, Molecular clocks, Methods of phylogeny, Statistical Evaluation of the obtained phylogenetic trees or validation methods, Software for phylogenetic analysis, Reliability of molecular phylogenetic prediction Molecular Viewers, Introduction, A few molecular viewers, RasMol, Deep view- The Swiss-PDB viewer (SPDBV), Cn3D. | 5 |

Text book and Reference books:

1. Bioinformatics: A Textbook, Wiley Online Library

PEC-CS-802A: Security Assessment and Risk Analysis
Lecture per week (L – T): 3-0 Credits: 3

Course Outcomes (COs):

Upon completion of this course, the students will be able to:

1. Develop risk management models for implementing a deeper risk management program in their organization
2. Demonstrate proper risk management and risk analysis technique and methodology.
3. Plan vulnerability assessment, threat assessment and risk analysis projects as it relates to physical security.
4. Prepare and present business-based recommendations for expenditure of security funds.
5. Construct plans that address facility access and the protection of structures and components that contain the automated information system and network equipment.
6. Illustrate risk analysis and protection of telecommunication

Prerequisites:
- Cyber security fundamentals

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Threats to and Vulnerabilities of Systems: definition of terms (e.g., threats, vulnerabilities, risk), major categories of threats (e.g., fraud, Hostile Intelligence Service (HOIS), malicious logic, hackers, environmental and technological hazards, disgruntled employees, careless employees, HUMINT, and monitoring), threat impact areas, Countermeasures: assessments (e.g., surveys, inspections), Concepts of Risk Management: consequences (e.g., corrective action, risk assessment), cost/benefit analysis of controls, implementation of cost effective controls, monitoring the efficiency and effectiveness of controls (e.g., unauthorized or inadvertent disclosure of information), threat and vulnerability assessment.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Security Planning: directives and procedures for policy mechanism, Risk Management: acceptance of risk (accreditation), corrective actions information identification, risk analysis and/or vulnerability assessment components, risk analysis results evaluation, roles and responsibilities of all the players in the risk analysis process, Contingency Planning/Disaster Recovery: agency response procedures and continuity of operations, contingency plan components, determination of backup requirements, development of plans for recovery actions after a disruptive event, development of procedures for offsite processing, emergency destruction procedures, guidelines for determining critical and essential workload, team member responsibilities in responding to an emergency situation.</td>
<td>8</td>
</tr>
</tbody>
</table>
Policies and Procedures: Physical Security Measures: alarms, building construction, cabling, communications centre, environmental controls (humidity and air conditioning), filtered power, physical access control systems (key cards, locks and alarms), Personnel Security Practices and Procedures: access authorization/verification (need to know), contractors, employee clearances, position sensitivity, security training and awareness, systems maintenance personnel, Administrative Security Procedural Controls: attribution, copyright protection and licensing , Auditing and Monitoring: conducting security reviews, effectiveness of security programs, investigation of security breaches, privacy review of accountability controls, review of audit trails and logs

Operations Security (OPSEC): OPSEC surveys/OPSEC planning INFOSEC: computer security – audit, cryptography encryption (e.g., point to point, network, link), cryptography key management (to include electronic key), cryptography strength (e.g., complexity, secrecy, characteristics of the key) Case study of threat and vulnerability assessment.

Text Book and Reference Books:

2. Cyber-Risk Management by Atle Refsdal, Bjørnar Solhaug and Ketil Steien - Springer
3. Auditing IT Infrastructures for Compliance by Marty M. Weiss and Michael G. Solomon – Jones & Bartlett Learning
5. Information Security Risk Assessment Toolkit by Mark Talabis and Jason Martin – Elsevier

PEC-CS-802B: Mobile Computing
Lecture per week: 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Understand the necessary knowledge of cellular communication, infrastructure-less networks
2. Analyze TCP, MAC protocols and their technical feasibility
3. Analyze device independent applications
4. Acquire knowledge about the basic concepts and principles in mobile computing
5. Understand techniques involved, in networks
6. Analyze systems issues for the design and implementation of mobile computing systems.

Prerequisites:
- Computer Networks

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Personal Communications Services (PCS): PCS Architecture, Mobility management, Networks signaling. Global System for Mobile Communication (GSM) system overview: GSM Architecture, Mobility management, Network signaling.</td>
<td>4</td>
</tr>
</tbody>
</table>
2 | General Packet Radio Services (GPRS): GPRS Architecture, GPRS Network Nodes. Mobile Data Communication: WLANs (Wireless LANs) IEEE 802.11 standard, Mobile IP | 4 |
4 | Third Generation (3G) Mobile Services: Introduction to International Mobile Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple Access (W-CDMA), and CDMA 2000, Quality of services in 3G. | 6 |
5 | Global Mobile Satellite Systems; case studies of the IRIDIUM and GLOBALSTAR systems. Wireless Enterprise Networks: Introduction to Virtual Networks, Blue tooth technology, Blue tooth Protocols. | 6 |
6 | Server-side programming in Java, Pervasive web application architecture, Device independent example application | 4 |

Text book and Reference books:

PEC-CS-802C: Deep Learning

Lectures per week: 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. **Recognize** the characteristics of deep learning models that are useful to solve real-world problems.
2. **Understand** different methodologies to create application using deep nets.
3. **Identify** and apply appropriate deep learning algorithms for analyzing the data for variety of problems.
4. **Implement** different deep learning algorithms.
5. **Design** the test procedures to assess the efficacy of the developed model.
6. **Combine** several models in to gain better results.

Prerequisites:
- Machine Learning Foundations

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module1</td>
<td>Content1</td>
<td>Hours1</td>
</tr>
<tr>
<td>Module2</td>
<td>Content2</td>
<td>Hours2</td>
</tr>
<tr>
<td>Module3</td>
<td>Content3</td>
<td>Hours3</td>
</tr>
</tbody>
</table>
Introduction: Various paradigms of learning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques

Feed forward neural network: Artificial Neural Network, activation function, multi-layer neural network, cardinality, operations, and properties of fuzzy relations

Training Neural Network: Risk minimization, loss function, back propagation, regularization, model selection, and optimization.

Conditional Random Fields: Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.

Transfer Learning
Transfer learning Techniques, Variants of CNN: DenseNet, PixelNet.

Deep Learning: Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Deep Belief Network

Auto Encoders
Under complete Auto encoder, Regularized Auto encoder, stochastic Encoders and Decoders, Contractive Encoders

Text book and Reference books:

PEC-CS-802D: Digital Image Processing
Contacts: 3L per week Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

- Review the fundamental concepts of a digital image processing system.
- Analyze images in the frequency domain using various transforms.
- Evaluate the techniques for image enhancement and image restoration.
- Categorize various compression techniques.
- Interpret Image compression standards.
- Interpret image segmentation and representation techniques.

Prerequisites:

- Digital Signal Processing
- Linear Algebra
- Discrete Mathematics

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Various paradigms of learning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Feed forward neural network: Artificial Neural Network, activation function, multi-layer neural network, cardinality, operations, and properties of fuzzy relations</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Training Neural Network: Risk minimization, loss function, back propagation, regularization, model selection, and optimization.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Conditional Random Fields: Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Transfer Learning Transfer learning Techniques, Variants of CNN: DenseNet, PixelNet.</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Deep Learning: Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Deep Belief Network</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Auto Encoders Under complete Auto encoder, Regularized Auto encoder, stochastic Encoders and Decoders, Contractive Encoders</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Introduction: Overview of Image Processing, Application area of image processing, Digital Image Representation, Sampling & quantization. Spatial and Intensity resolution, interpolation, Relationship between pixels – Neighbors, Adjacency, connectivity, Regions, Boundaries and Distance.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Image Enhancement in Spatial Domain: Image Quality and Need for image enhancement, Intensity transformation – negative, log, power-law and contrast stretching (linear and non-linear) Histogram based techniques, Spatial Filtering concepts, Spatial Convolution and Correlation, Image smoothing and Sharpening spatial filters. Image Enhancement in Frequency Domain: Properties of 1-D and 2-D Discret Fourier Transform (DFT), Basic of filtering in the frequency domain. Image smoothing and sharpening in frequency domain.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Image Restoration: Introduction to degradation, Types of Image degradations, image degradation models, noise modeling, Estimation of degradation functions, Image restoration in presence of noise only – spatial filtering, Periodic noise and band – pass and band reject filtering.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Image Compression: coding redundancy, Image compression model, Compression Methods – Huffman coding, Arithmetic coding, LZW coding, Run-length coding, and Predicative coding and Vector quantization.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Image Segmentation: Introduction, Detection of Discontinuities, Point Detection, Line Detection and Edge Detection, Thresholding – Local, Global, Optimum, Multiple and Variable, Hough Transforms, Principle of region – growing, splitting and merging.</td>
<td></td>
</tr>
</tbody>
</table>

Text book and Reference books:

5. Bhabatosh Chanda, Dwijesh Dutta Majumder, Digital Image Processing and Analysis, Prentice Hall of India

OEC-CS-801A: Operations Research

Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Design linear programming tools for optimal utilization of resources in various types of industries.
2. Evaluate transportation problems to minimize cost and understand the principles of assignment of jobs and recruitment polices.
3. Analyze decision making under certainty, uncertainty and conflicting situations.
4. Apply forecasting methods for predicting demands.
5. Understand the basic elements of a Queuing model.
6. Remember and Define PERT/CPM technique for project scheduling and resource allocation in an optimal way.

Prerequisites:
Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Transportation Problem: Introduction, Formulation of Transportation Problem (TP), Transportation Algorithm (MODI Method), the Initial Basic Feasible Solution, Moving Towards Optimality. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Travelling Salesman Problem.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Queuing Theory: Basis of Queuing theory, elements of queuing theory, Operating characteristics of a queuing system, Queue discipline, Service Mechanism, Classification of Queuing models, [M/M/1]:{FCFS} Queue System, numerical. Inventory Management: Inventory classification, Different costs associated to Inventory, Inventory models with deterministic demands (EOQ, EPQ and price discount models), inventory classification systems.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Job Sequencing: Introduction to sequencing and scheduling models: n job two machines problem, n job 3 machines problem. Decision Theory: Introduction, Decision under certainty, Decision under risk, Decision under uncertainty: Laplace criterion, MaxiMin criterion, MiniMax criterion, savage MiniMax regret criterion, Hurwicz criterion, Decision tree.</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Replacement Theory: Introduction, Replacement of capital equipment which depreciated with time, replacement by alternative equipment, Group and individual replacement policy.</td>
<td>3</td>
</tr>
</tbody>
</table>

Text book and Reference books:

OEC-CS-801B: Remote Sensing and GIS
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

After studying this course, student will be able to:

1. **Analyse** the principles and components of photogrammetry and remote sensing.
2. **Describe** the process of data acquisition of satellite images and their characteristics.
3. **Compute** an image visually and digitally with digital image processing techniques.
4. **Explain** the concepts and fundamentals of GIS.
5. **Design** of different civil engineering applications by computation knowledge of remote sensing and GIS.
6. **Apply** remote sensing in different thematic studies.

Prerequisites:

1. Internet Fundamental
2. Data Base Management System
3. Basics of Sensor Technology

Detailed Content:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs./Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction and Overview of Geographic Information Systems
Definition of a GIS, features and functions; why GIS is important; how GIS is applied; GIS as an Information System; GIS and cartography; contributing and allied disciplines; GIS data feeds; historical development of GIS.
GIS and Maps, Map Projections and Coordinate Systems
Maps and their characteristics (selection, abstraction, scale, etc.); automated cartography versus GIS; map projections; coordinate systems; precision and error.</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Data Sources, Data Input , Data Quality and Database Concepts
Major data feeds to GIS and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files; relational database systems; data modeling; views of the database; normalization; databases and GIS.
Spatial Analysis
Questions a GIS can answer; GIS analytical functions; vector analysis including topological</td>
<td>11</td>
</tr>
</tbody>
</table>
overlay; raster analysis; statistics; integrated spatial analysis.

Making Maps
Parts of a map; map functions in GIS; map design and map elements; choosing a map type; producing a map formats, plotters and media; online and CD-ROM distribution; interactive maps and the Web.

3. Implementing a GIS
Planning a GIS; requirements; pilot projects; case studies; data management; personnel and skill sets; costs and benefits; selecting a GIS package; professional GIS packages; desktop GIS; embedded GIS; public domain and low cost packages.

Technology & Instruments involved in GIS & Remote Sensing
GIS applications; GIS application areas and user segments; creating custom GIS software applications; user interfaces; case studies. Future data; future hardware; future software; Object-oriented concepts and GIS; future issues – data ownership, privacy, education; GIS career options and how to pursue them.

4. Remote Sensing
Remote sensing of environment, E.M. Principle, Thermal infrared remote sensing, Remote sensing of Vegetation, Remote sensing of water, urban landscape

Text book and Reference books:
4. “Getting Started with Geographic Information Systems”, Keith Clarke, PHI.

OEC-CS-801C: Ecommerce and ERP
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Understand fundamental concepts and technologies related to ERP.
2. Explain the different phases of ERP implementation life cycle.
3. Examine the modules, benefits and various tools of ERP.
4. Analyze the impact of e-commerce on business model and strategies.
5. Assess the electronic payment systems and software.
6. Identify and solve the security issues related to communication.

Prerequisites:
• Basic Mathematics

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to E-Commerce</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Introduction What is E-Commerce, Forces behind E-Commerce Industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Framework, Brief history of E-Commerce, Inter Organizational E-Commerce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intra</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Mobile Commerce and ERP
| 3 | E-Commerce Payment and Gateways
Electronic Payments Overview of Electronics payments, Digital Token based Electronics payment System, Smart Cards, Credit Card I Debit Card based EPS, Emerging financial Instruments, Home Banking, Online Banking. | 6 |
| 4 | E-Commerce and EDA
Net Commerce EDA, EDI Application in Business, Legal requirement in E-Commerce, Introduction to supply Chain Management, CRM, issues in Customer Relationship Management. | 6 |
| 5 | Internet and E-Commerce
Internet and Electronic commerce, internet, extranet and enterprise solutions, information system for business operations, information system for managerial decision support, information system for strategic advantage. | 6 |
| **Total** | **30** |

Books Recommended:

OEC-CS-801D: Business Analytics

Contacts: 3L per week
Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

- **Understand** and critically apply the concepts and methods of business analytics.
- **Identify**, model and solve decision problems in different settings.
- **Interpret** results/solutions and identify appropriate courses of action for a given managerial situation whether a problem or an opportunity.
- **Create** viable solutions to decision making problems.
- **Apply** appropriate analytical methods to find solutions to business problems that achieve stated objectives.
- **Remember** and describe complex business problems in terms of analytical models.

Prerequisites:

- Probability and Statistics
Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foundations of Business Analytics
Introduction to Business Analytics, Analytics on Spreadsheets</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Product-Market Fit: Gap Analysis
Gap Analysis, Carrying Out Gap Analysis, Steps in Gap Analysis, Conducting a Representative Survey for Gap Analysis, Predicting, Consumer Behavior and Gap Analysis in Smartphone Market.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Analytical Modeling by Logistics Regression and Discriminant Analysis
Linear Discriminant Analysis Model, Predictive Modeling using Discriminant Analysis, Application of Linear Discriminant Analysis for Credit Scoring of Loan Applicants. Theoretical Formulation of Logistics Regression, Mathematical Interpretation of Logistics Regression, Indicator for Model Fit, Applying Logistics Regression, Application of Logistics Regression in Predicting Risk in Portfolio Management Testing the Reliability/Consistency of the Different Factors Measured.</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Segmentation of primary target market by Heuristic Modeling
Introduction to RFM Analysis Enhancing Response Rates with RFM Analysis.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Segmentation of target market based on large databases using Decision Tree approach.
Introduction to Chi-square Automatic Interaction Detection (CHAID) Predictive Modelling by CHAID</td>
<td>5</td>
</tr>
</tbody>
</table>

Text book and Reference books:
6. “Business Intelligence: A Managerial Perspective on Analytics”, Ramesh Sharda, Dursun Delen, Efraim Turban, David King, Prentice Hall

OEC-CS-802A: Numerical methods
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):
At the end of the course, the students will be able to:
1. Understand the limitation of analytical approach to solve real life complicated problems and how numerical methods are effective to approximate the result with minimum error.
2. Familiar with source and effect of error on numerical computations and also analyze the efficiency of different numerical methods.
3. Familiar with numerical interpolation and approximation of functions.
4. Obtain numerical solution of algebraic and transcendental equation, system of linear equations and how to solve definite integrals and initial value problems.
5. Learn various numerical techniques to solve multi-disciplinary problems in real life.
6. Solve some problems numerically and getting hands on experience.

Prerequisites:
- Basic Mathematics on Probability, Integration, Differentiation.

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev’s Inequality, Bayes’ rule.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Basic Statistics, Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, Tests for single mean, difference of means, and difference of standard deviations. Test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors. Interpolation: Newton forward/backward interpolation, Lagrange’s and Newton’s divided difference Interpolation. Numerical integration: Trapezoidal rule, Simpson’s 1/3 rule, Expression for corresponding error terms.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Numerical solution of ordinary differential equation: Euler’s method, Runge-Kutta methods, Predictor Corrector methods and Finite Difference method.</td>
<td>4</td>
</tr>
</tbody>
</table>

Text book and Reference books:
7. Sashtry, Advanced Engineering Mathematics, PHI
OEC-CS-802B: Multimedia Technology
Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:
1. Create a well-designed, interactive Web site with respect to current standards and practices
2. Demonstrate in-depth knowledge in an industry-standard multimedia development tool and its associated scripting language
3. Determine the appropriate use of interactive verses standalone Web applications
4. Create time-based and interactive multimedia components
5. Identify issues and obstacles encountered by Web authors in deploying Web-based applications
6. To apply the basic understanding of concepts in real-world applications.

Prerequisites:

1. Basic Mathematics
2. Computer Organization
3. Computer Graphics

Detailed Content:

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multimedia: Introduction to multimedia, Components, Uses of multimedia.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Making Multimedia: Stages of a multimedia project, Requirements to make good multimedia, Multimedia Hardware - Macintosh and Windows production Platforms, Hardware peripherals - Connections, Memory and storage devices, Multimedia software and Authoring tools.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Text: Fonts & Faces, Using Text in Multimedia, Font Editing & Design Tools, Hypermedia & Hypertext.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Still Images – Bitmaps, Vector Drawing, 3D Drawing & rendering, Natural Light & Colours, Computerized Colours, Color Pallets, Image File Formats.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Sound: Digital Audio, MIDI Audio, MIDI vs Digital Audio, Audio File Formats.</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Multimedia System: An overview of multimedia system and media streams, Source representation and compression techniques text, speech and audio, still image and video, Graphics and animation. Multi-modal Communication: Video conferencing, networking support, Trans-coding</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 30

Text/ Reference Books:
1. Multimedia: Making it work by Tay Vaughan, TMH.
3. Multimedia Handbook by Keyes, TMH.
5. Principles of Multimedia by Parekh, McGraw Hill

OEC-CS-802C: Introduction to Arts and Aesthetics

Contacts: 3L per week
Credits: 3

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- Analyze and implement the concept of Aesthetics.
- Describe a historical understanding on Western and Indian Aesthetics.
- Understand the aesthetic concepts from various Western and Indian philosophers.
- Analyze the contextual relevance of aesthetic theories.
- Develop a culture of critical and analytical thinking.
- Implement the aesthetical and philosophical concepts.

Prerequisite:
NIL

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
</table>
| 1 | Literary Art Kavya, Fine Arts: Painting (Chitra), Music (Sangita), Sculpture (Bhaskarya).
Kavya-Laksana (Definition of Poetry), Kavya-hetu: Pratibha, Vyutpatti and Abhyasa,
Their distinctive roles in Poetic Creation, Kavya Prayojana.
Varieties of Kavya: Drsyya and Sravya, Structural Varieties of Drsyakavya. | 6 |
| 2 | Different Schools of Literary Criticism (Kavyavicara): Rasa School (Bharata),
Vakrokti School or the School of Alankara (Bhamaha and Kuntaka), Riti School or the School of 6 Gunas (Dandin and Vamana), Dhvani School (Anandavardhana) and Rasadvani School (Abhinavagupta). | 7 |
| 3 | Aesthetics and Philosophical Aesthetics: Second order Aesthetics, The World of Human Experience and Art and Experience.
Art and its Definition: Art as Representation, Art as Expression and Art as Significant Form. Kantian Aesthetics (Critique of Judgment) | 7 |
| 4 | Art and Emotion: The Concept of Emotion, The Concept of Fiction and Fiction and Emotion. Literary Aesthetics: The Concept of Literature, Metaphor, Truth, Meaning and Interpretation. | 6 |
| 5 | Art, Society and Morality: Views of Tolstoy and Post-modernism. | 3 |

Text book and Reference books:

OEC-CS-802D: Research Methodology

Lecture per week (L): 3 Credits: 3

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. **Discuss** different methodologies and techniques used in research work.
2. **Explain** basic computer skills necessary for the conduct of research.
3. **Explain** key research concepts and issues.
4. **Select** and define appropriate research problem and parameters.
5. **Develop** the required numerical skills necessary to carry out research.
6. **Develop** an appropriate framework for research studies.

Prerequisites:

- Probability and Statistics

Detailed Content:

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hours/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESEARCH FORMULATION AND DESIGN Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative vs. Empirical, concept of applied and basic research process, criteria of good research. Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database, development of working hypothesis</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>DATA COLLECTION AND ANALYSIS Accepts of method validation, observation and collection of data, methods of data collection, sampling methods, data processing and analysis strategies and tools, data analysis with statically package (Sigma STAT,SPSS for student t-test, ANOVA, etc.), hypothesis testing</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>RESEARCH ETHICS, IPR AND SCHOLARLY PUBLISHING Ethics-ethical issues, ethical committees (human & animal); IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability.</td>
<td>8</td>
</tr>
</tbody>
</table>
Text book and Reference books: