Branch-and-bound

Branch-and-bound is a general technique for improving the searching process by systematically enumerating all candidate solutions and disposing of obviously impossible solutions.
Branch-and-bound usually applies to those problems that have finite solutions, in which the solutions can be represented as a sequence of options. The first part of branch-and-bound, branching, requires several choices to be made so that the choices branch out into the solution space. In these methods, the solution space is organized as a treelike structure. Figure 4.25 shows an instance of TSP and a solution tree, which is constructed by making choices on the next cities to visit.
[image: ]
FIGURE 4.25. A TSP and its solution tree after applying branch-and-bound.
Branching out to all possible choices guarantees that no potential solutions will be left uncovered. But because the target problem is usually NP-complete or even NP-hard, the solution space is often too vast to traverse. The branch-and-bound algorithm handles this problem by bounding and pruning. Bounding refers to setting a bound on the solution quality (e.g., the route length for TSP), and pruning means trimming off branches in the solution tree whose solution quality is estimated to be poor. Bounding and pruning are the essential concepts of the branch-and-bound technique, because they are used to effectively reduce the search space. We demonstrate in Figure 4.25 how branch-and-bound works for the TSP problem.
The number under a leaf node of the solution tree represents the length of the corresponding route. For incomplete branches, an expression in the form of a + b is shown. In this notation, a is the length of the traversed edges, and b is a lower bound for the length of the remaining route that has not been explored. The lower bound is derived by use of a minimum spanning tree that consists of the unvisited vertices, as well as the root and leaf vertices of the partial route. For example, for the unfinished route A→B→E, a minimum spanning tree is built for nodes A, C, D, and E, and its value is 12. This lower bound is a true underestimate for the length of the remaining route. The sum of these two numbers provides the basis for bounding.
The solution tree is traversed depth-first, with the length of the current shortest route as the upper bound for future solutions. For example, after A→B→C→D→E→A is examined, the upper bound is 21, and after the next route is explored, the bound drops to 15. Every time a partial route is extended by a vertex, a lower bound for the length of the rest of the route is computed. If the sum a + b is over or equal to the current upper bound, the solutions on that branch guarantees to be worse than the current best solution, and the branch can be pruned. Most branches are pruned in Figure 4.25.
An exhaustive search will build a search tree with 89 nodes,1 but the solution tree with branch-and-bound has only 20 nodes. Branch-and-bound accelerates the search process by reducing the solution space en masse. Although branch-and-bound algorithms generally do not possess proven time complexity, their efficiency has made them the first choice for many problems, especially for NP-complete problems.
Branch-and-bound mainly addresses optimization problems, because bounding is often based on numerical comparisons. TSP that uses the route length as the bound is a classical application; however, it can also be applied to some decision problems. In these cases, the bounding criteria are often restrictions or additional descriptions of possible solutions. The Davis-Putnam-Logemann-Loveland (DPLL) search scheme for the Boolean Satisfiability problem is a typical and important application for this kind of branch-and-bound algorithm.


Prof.(Dr.)Soumen Paul
Head, IT
image1.png

