
 
 

                   Ordinary Differential Equation (ODE) 

INTRODUCTION: Ordinary Differential Equations play an important role in different branches 

of science and technology. In the practical field of application problems are expressed as 

differential equations and the solution to these differential equations are of much importance. In 

Here we shall discuss the fundamental concepts of ordinary differential equations followed by 

which deal with the various analytical methods to solve different forms of differential equations.  

If x is the independent variable and y is a dependent variable then the equation involving x ,y and 

one or more of the following  

 
  

  
, 

   

   
,…, 

   

   
,…. 

is called an ordinary differential equation. 

Observation: The word ordinary states the fact that there is only one independent variable in the 

equation.  

 ORDER AND DEGREE OF ORDINARY DIFFEHENIAL EQUATIONS: The order of an 

ordinary differential equation is the order of the highest ordered derivative involved in the 

equation and the degree of an ordinary differential equation is the power of the highest ordered 

derivative after making the equation rational and integrable as far as derivatives are concerned.  

Example1: The order and degree of the differential equation  

   

     
  

  
       is 4 and 1 respectively.  

Example: Find a differential equation from the following relation 

   
 

 
  . 

Solution: Here we observed that here of constant are   and   we have to eliminate the constants. 

Now,   
 

 
  ,        ….(1) 

Differentiating (1) with respect to   we get  

 
  

  
  

 

            …(2) 

Differentiating (2) with respect to   again we get  

 
   

     
  

             …(3) 



 
 

Eliminating   from (2) and (3) we have  
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Or,  
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Or,   
    

    
 

 

  

  
    

Therefore the required differential equation is of second order, and which is of the reduced form 

    

    
 

 

  

  
     

Example2: Suppose a curve is defined by the condition that the sum of   and   intercepts of its 

tangents is always equal to  . Express this by a differential equation. 

Solution The equation of the tangent at any point       on the curve is given by 

     
  

  
       

Or, 
 

   
  
  

 
  
  

 
 

   
  

  

    

By the given condition we have  

 
   

  

  

 
  

  

    
  

  
    

Or,    
  

  
    

  

  
   

Or,   
  

  
 

 

        
  

  
      

This is the required first order but second degree differential equation.  

Ordinary differential equation of first order and first degree 

Any differential equation of first order and first degree is of the form 

        
  

  
  

Let         
      

      
, 

 



 
 

Then the standard form of differential equation of first order is  

                      

The following equations represent first order, first degree: 

1. 
  

  
      

2.                                  

Theorem: I f 
  

  
 and 

  

  
 are continuous then the necessary and sufficient condition that 

the differential equation                     to be exact is 
  

  
 

  

  
. 

Method of solution  

Step 1: Calculate           treating   as constant. 

Stem 2: Calculate           for those terms of   which do not contain  . 

Stem 3: solution is  

          treating   as constant+          for those terms of   which do not 

contain   = constant.  

 

Example: Show that the differential equation  

                                  

is exact differential equation and find the general solution. 

Solution: Here                     and                   . 

Now  
  

  
           and 

  

  
           . 

Therefore  
  

  
 

  

  
 .The given equation is exact.  

And its solution is              , where   is arbitrary constant. 

  

Ordinary Differential equation of Higher Order and first Degree 

The important and method of solution of first order differential equations have been 

discussed in previous articles. Differential applications of engineering and science encounter 

linear differential equations of higher order with constant coefficients and coefficients are 

functions of x. 

Example: Solve the equation, 
   

   
  

  

  
     . 

Solution: Let       be a trial solution of 
   

   
  

  

  
     . 

 



 
 

Then the auxiliary equation 

          . Hence    ,  . 

Hence the solution of the given equation,               . 

Example: Solve                 Where   
 

  
. 

Solution: Let       be a trivial solution then the auxiliary equation is       , 

Hence     .  

Therefore complementary function is  

       
       

    

Where    and    are constant.  

Now the particular integral is  

     
 

    
       

 
 

    

       

 
  

 
 

 

 

    
  

 

 

 

    
       

  
 

 
   

  

 
 

  

   
 

 

 

       
       

  
 

 
   

  

 
    

 

  
       

  
 

 
 

 

  
      . 

Therefore the general solution is  

               
       

   
 

 
 

 

  
      

 Supplementary questions 

1. Solve the following differential equation 

(a) 
   

   
  

  

  
                . 

[Answer:               
 

 
      

 

 
               

 

 
      ] 

(b) 
   

     
  

  
             



 
 

[Answer:              
 

  
                   ] 

Example: Solve by variation of parameter, 

   

   
            . 

Solution: The differential equation can be written as  

                  , where   
 

  
. 

Here the complementary function                  . 

Let the particular integral be                , where   and   are function of  . 

Now    
    

  
   

    
         
         

     . 

Now     
   

 
                         

      

 
. 

And    
   

 
                       

      

 
. 

Therefore the solution is                 
      

 
     

      

 
    . 

 

  



 
 

Graph Theory 
 

Introduction to graphs: 

 Graph theory is one of the oldest subjects with lots of applications in applied mathematics 

and engineering. The great Swiss mathematician Leonhard Euler introduced the basic ideas of 

the subject in the eighteenth century. After that several numbers of research articles and books 

have been published in this field.    

 Graphs are used in many diverse fields, including Computer Science, Operations 

Research, Chemistry, Electrical Engineering, Linguistics and Economics. 

 In this chapter we begin our study with an introduction to several basic concepts in the 

theory of graphs and examples. A few results involving these concepts will also be established.  

 

 Graphs and their representations: 

 To represent situations involving some objects and their relationships by drawing a 

diagram of points with segments joining those points that are related. Let us consider some 

specific examples of this idea. 

 

Example 1. Consider for a moment an airline route in which dots represent the cities and two 

dots are join if there is a direct flight between the corresponding cities.  Such an airline map 

shown in the Fig.-6.1. 

 

 
 

Definition. A graph (or a undirected graph) G is a pair (VG, EG) where VG is the non empty finite 

set, called the set of vertices (or nodes) and EG is a finite set (may be empty) whose elements are 

called the edges (or arcs) such that each edge e is identified with an unordered pair {u, v}(or 

simply uv) of vertices, i.e. EG = {{u, v}: u, v  V, u ≠ v} or . EG = {uv: u, v  V, u ≠ v}. 

 

For a graph the number GV of the vertices is called the order of G and GE  is the size of G.  

The vertices u, v associated with an edge 'e' is called end vertices of e. When a vertex v is an end 

vertex of some edge e, then v is said to be incident on e and e is said to be incidence with v.  

 

Definition: A graph G = (VG, EG) is trivial, if it has only one vertex, i.e. GV = 1; otherwise G is 

nontrivial. 

 

Graph Terminology:  

 

Before proceeding, we need following terminology about graphs.  
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1. Adjacent vertices: Two vertices are said to be adjacent if they are the end vertices of an 

edge. In the graph G in Fig.-1 e2 = v1v2 is incidence with the vertices v1 and v2. So v1 and v2 

are adjacent vertices. But, since no edge is incidence with v2 and v3 they are not adjacent.  

 

 

 

 

 

 

          
        Undirected Graph G 

 

2. Parallel Edges: If some distinct edges are incidences with same pair of vertices then the 

edges are called parallel edges. In the graph G in Fig.-1 e1 and e2 are parallel edges incident 

with the vertex v1 and v2.  

 

3. Loop: An edge incident on a single vertex is called a loop, i.e. if end vertices of an edge are 

same then that edge is called a loop. In the graph G in Fig.-1 e5 is a self-loop. 

 

4. Isolated vertex: A vertex, which is not the end vertex of any edge, called isolated vertex. In 

other wards isolated vertex is of degree zero. In the graph G in Fig.-1 v6 is an isolated vertex. 

 

5. Pendant vertex: A vertex of degree one is called a pendant vertex. In the graph G in Fig.-1 

v5 is a pendant vertex. 

 

6. Degree of a vertex: The degree of a vertex in an undirected graph is the number of edges 

incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. 

The degree of the vertex v is denoted by deg(v) or d(v). 

The number  (G) = min{d(v) v  VG} is the minimum degree of G, the number  (G) = 

max{d(v) v  VG} is the maximum degree of G and dA(G) = 
 GVv

d(v)
V

1

G

 is the average 

degree of G. 

Corollary 1.  (G)  
G

G

V

E2
  (G).  

Types of graphs: Graphs are classified according to the existence of multiple edges and loops. 

 

1. Simple graph: A graph that has neither a loop nor parallel edges is called simple graph. The 

following figures are the examples of simple graph. 
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Multiple graph: The graph in which the same two vertices are joined by more than one edge are 

called multiple graphs or multigraphs.  

The graphs, which have edges from a vertex to itself (i.e. self-loop) are not allowed in 

multigraphs. Instead of Pseudographs are used. Pseudographs are more general than 

multigraphs since they may contain loops and multiple edges.  

 

       Table – 1. 

 

Type Multiple edges allowed? Loops allowed? 

Simple Graph No No 

Multigraph Yes No 

Pseudograph Yes Yes 

 

2. Weighted graph: The graph G is called a weighted graph if each edge e of G is assigned a 

non-negative number w(e) called the weight or length. 

 

3. Finite or infinite graph: A graph is said to be finite if it has finite number of vertices and a 

finite number of edges. Observe that a graph with finite number of vertices must 

automatically have a finite number of edges and so must be finite; otherwise it is an infinite 

graph.   

Theorem 1: If G is a graph with m edges and n vertices then 


n

1i

i )d(v  = 2m. 

Proof: Let e be an edge with end vertices vi and vj then e contribute 1 to the degree of vi and 1 to 

the degree of vj. If e is a self-loop on v then e contributes 2 to the degree of v. Thus each edge 

contributes 2 to the total number of degrees of the vertices.  

 Hence, 


n

1i

i )d(v  = 2m. 

Note: The above theorem sometimes called the Handshaking theorem, because of the analogy 

between an edge having two end points and a handshake involving two hands. 

 

Theorem 2: The number of vertices of odd degree in a graph is always even.  

 

Proof: Let V1 and V2 be the set of vertices of even degree and the set of vertices of odd degree 

respectively in a graph G = (VG, E G). Then by theorem -1 

 2m = 
Vv

d(v)  = 
 1Vv

d(v)  + 
 2Vv

d(v) . 

Since d(v) is even for each vV1, the first term in the right-hand side is even. Furthermore, the 

sum of the terms of the right –hand side is even since 2m is even. Hence the second term is also 

even. Since all the terms in this sum are odd, there must be an even number of such terms. Thus 

there is even number of vertices of odd degree.  

 

Problem 1: Show that the maximum degree of any vertex in a simple graph with n vertices is (n-

1). 

 



 
 

Since the graph is simple, no self-loop and parallel edges are present in it. So in maximum case 

in a simple graph one vertex can be connected with the remaining vertices. 

So, in a simple graph with n vertices, a vertex can be connected with maximum (n-1) vertices 

and as the degree of a vertex is the number of edges incident on it, the maximum degree of any 

vertex in a simple graph with n vertices is (n-1).  

 

Problem 2: Show that the maximum number of edges in a simple graph with n vertices is 

2

)1n(n 
.  

Solution: By Handshaking theorem 


n

1i
)id(v = 2m. Where m is the number of edges with n 

vertices in the graph G.  d(v1) + d(v2) + …… + d(vn) = 2m…………(1) 

since we know that the maximum degree of each vertices in the graph G can be (n-1).  

Therefore equation (1) reduces to (for maximum case) (n-1) + (n-1) + …+ (n-1) = 2m 

 n(n-1) = 2m  m =
2

)1n(n 
. 

 Hence the maximum number of edges in any simple graph is
2

)1n(n 
. 

Problem 3: Is it possible to draw a simple graph with 4 vertices and 7 edges? 

Solution: The graph does not exit, since in a simple graph with n vertices the maximum number 

of edge with be 
2

)1n(n 
. Here 

2

)14(4 
=6 < 7.  

Some Important Graphs: 

 

1. Directed graphs or Digraphs: When a direction is associated with the edges of a graph.  

Formally, a digraph or oriented graph G(D) is an ordered pair (VG(D), EG(D)) where VG(D) 

is a nonempty  finite set of elements known as vertices and EG(D) is  a family of ordered 

pairs (not necessarily distinct) of elements known as directed  edges or arcs. 

 

 

 

 

 

 

 

 

 

 

 
          Digraphs G and H 

 

The graph G in Fig -3 two edges joining v1 and v3 having opposite directions and without loops, 

hence this is a simple digraph. On the other hand in H, v3 and v4 are joined by three edges with 

same direction with a loop e2, hence this is a multiple digraph. 
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In-degree and out-degree: In a graph with directed edges the in-degree of a vertex v, denoted 

by  d
-
(v) or (v)d


is the number of edges with v as their terminal vertex. The out degree of v, 

denoted by d
+
(v) or (v)d


, is the number of edges with v as their initial vertex. (Note that a loop at 

a vertex contributes 1 to both in degree and out degree of this vertex). The graph H in Fig– 3 in-

degree and out-degree of different vertices are d
–
(v1) = 0, d

-
(v2) = 2, d

–
(v3) = 4, d

– 
(v4) = 1, d

+
(v1) 

= 3, d
+
(v2) = 1, d

+
(v3) = 0, d

+
(v4) = 3.      

Observation 1: In a digraph G = (VG, EG), 


n

1i

i )(vd- = 



n

1i

)(vd i =
G

E . 

2. Regular Graph: Simple graph in which all vertices are of equal degree is called regular 

graph. A regular graph is also called n-regular if every vertex has degree n. 

 

 

 

 

 

  

 
             Regular graphs 

 

 

3. Null graph: A graph G is said to be null graph if edge set E of the graph is to be empty set. Nn 

denotes null graph with n vertices. The null graph N2 N3, N4 and N5 are displayed in Fig-5. 

 

 

 

 

 
     

 

 The null graphs N2, N3, N4 and N5 

 

4. Complete graph: The complete graph on n vertices, denoted by Kn, is the simple graph that 

contains exactly one edge between each pair of distinct vertices. That is a complete graph Kn is 

(n – 1)- regular. The graph Kn for n = 1, 2, 3, 4, 5, 6 are displayed in figure-6. 

 

 

 

 

 
   

 

           The Complete graphs K1, K2, K3, K4, K5 and K6   
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Note: The edges are sometimes may intersect at a point that does not represent a vertex, for 

example in K4, diagonal edges have no common vertices. 

 

5. Cycle: A graph on n( 3)  vertices, denoted by Cn, is said to be a cycle if the edges are v1v2,  

v2v3, v3v4, .…, vn -1vn. 

The cycles C3, C4, C5 andC6 are displayed in Fig.-7. 

 

 

 

 

 

 
  The cycles C3, C4, C5 and C6 

 

6. Wheel: We obtain the wheel Wn when we add an additional vertex to the cycle Cn, (n  3) and 

connect this new vertex to each of the n vertices in Cn, by the new edges. 

The wheels W3, W4, W5 and W6 are displayed in Fig.-8. 

 

 

 

 

 
 

    The wheel W3, W4, W5 and W6 

 

7. n-Cubes: The n-cube, denoted by Qn is the graph whose vertices representing the 2
n 

bit string 

(or order n- tuples of 0 and 1) of length n. Two vertices are adjacent if and only if they differ in 

exactly one bit position (one co-ordinate). The graph Q1, Q2 and Q3 are displayed in Fig-9. 

 

 

 

 

 

          

 

 
             The n cube Qn for n =1, 2, 3. 

The order of Qn is GV = 2
n
, the number of binary string of length n. Also since Qn is n-regular, 

by Handshaking lemma GE = n 2
n-1

.   

 

8. Bipartite Graph: Some times a graph has the property that its vertex set can be displayed into 

two disjoint sub-sets such that each edge connects a vertex in one of this subset to a vertex in 

other sub-set. For example, consider the graph representing marriages between people in a state, 

where the vertices represent the persons and the marriages are represented by the edges. In this 

graph, each edge connects a vertex in the subset of vertices representing males and a vertex in 

the subset of vertices representing formulas. 
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Definition: A simple graph G(VG, EG) is called a bipartite graph if the vertex set can be 

partitioned into two disjoint non-empty sets V1 and V2 such that each edge in E is incident on 

one vertex in V1 and one vertex in V2 ( so that no edge in E connects either two vertices in V1 or 

two vertices in V2).          

 

Example: States, which of the following graphs are bipartite? If the graph is bipartite specify the 

disjoint vertex sets. 

 

 

 

 

 

 

 

                             G1                               G2                                G3 

 
            The simple graphs G1, G2 and G3. 

 

Solution: (i) G1 is bipartite, since if we set V1={v1, v2, v3} and V2={v4, v5} each edge is incident 

on one vertex in V1 and one vertex in V2. 

 

(ii) G2 is not bipartite. Let us consider V1 and V2 be two partitioned of VG, and v5 V1. Then v4 

must be in V2 and v6 must be in V1 by the edge e2. Then v5 must be in V2 by the edge e3. So v5 

V1 and v5 V2. 

 

(iii) G3 is bipartite. The disjoint vertex sets are V1={v1, v3, v5} and V2 = {v2, v4}. 

 

Complete bipartite graph: The complete bipartite graph on m and n vertices, denoted by Km,n is 

the simple graph whose vertex set is partitioned into two sets V1 with m vertices and V2 with n 

vertices in which there is an edge between each pair of vertices {v1, v2} with v1 V1 and v2 V2. 

The complete bipartite graph K2,3, K3,3, K3,5 and K2,6  are displayed in fig-11. 

 

 

 

 

 

 

 

 

 

 
 

              The complete bipartite graphs K2,3, K3,3, K3,5 and K2,6 
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Graph Isomorphism and Subgraphs 

 

Isomorphism of Graphs: It is important to understand what one means by two graphs being 

same or different. Two graphs may have different geometrical structures but still be the same 

graph according to our definition.  

 

Definition : Two graphs G and H are isomorphic denoted by G  H if there exists a one-to-one 

mapping f from VG to VH such that  

uv  EG  {f(u), f(v)}  EH  for all u, v  VG in G. 

 

Hence G and H are isomorphic if the number of edges joining u to v in G is also the number of 

edges joining f(u) to f(v) in H.  

In particular, isomorphism of two graphs preserves adjacency and non-adjacency between any 

two vertices. 

 

 

 

 

 

 

 

 

 

 

 
          The simple graphs G and H. 

 

The graphs G and H in Fig-13 are isomorphic.  The vertices a, b, c, d and e correspond to v1, v2, 

v3, v4 and v5 respectively. The edges 1, 2, 3, 4, 5 and 6 correspond to e1, e2, e3, e4, e5 and e6 

respectively. 

 

Observations: For any two isomorphic graphs must have the following properties: 

1. The same number of vertices  

2. The same number of edges 

3. An equal number of vertices with a given degree. 

 

However, these conditions are not sufficient for an isomorphic graph. The following graphs G 

and H satisfy all the above conditions but yet they are not isomorphic.  

 

 

 

 

 

 
 

                The simple graphs G and H 
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The graph G in Fig-14 the vertex 'a' of degree 3 which is adjacent to two pendant vertices b and c 

and one vertex of degree 2 where as in H the vertex 'x' of degree 3 which is adjacent to only one 

pendant vertex y and two vertices of degree 2 each. Hence adjacency is not preserved. Therefore, 

G and H are not isomorphic. 

 

Example1: Determine whether the following graphs are isomorphic. 

 

 

 

 

 

 

 

 
   The simple graphs G and H 

Solution:  

(i) Both the graphs G and H have 8 vertices and 10 edges.  

(ii) Both have number of vertices of degree 2 are 4 and number of vertices of degree 3 

are 4. 

(iii) For adjacency, the vertex 1 in G of degree 3 is adjacent to one vertex of degree 3 

and other vertex of degree 2, but in H there does not exist any vertex of degree 3 

which is adjacent to two vertices of degree 3 and degree 2 respectively. Hence, 

adjacency is not preserved.  

Therefore, G and H are not isomorphic. 

Subgraphs: In some situation we deal with parts of the graph and a solution can be found to the 

problem by combining the information determined by parts. For example, the existence of an 

Euler tour (will see later on) is very local which depends only on the number of adjacent vertices.  

A graph H is said to be a subgraph of a graph G if it is obtained by selecting certain edges and 

vertices from G subject to the restriction that if we select an edge e in G that is incident on the 

vertices u and v, we must include u, v in H. The formal definition follows. 

 

Definition 1. Let G = (VG, EG) be a graph. H = (VH, EH) be a subgraph of G if 

(i) VH  VG and EG  EH  

(ii) For every edge e EH, if e is incident on u and v then u, v VH. 
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The graph G1 in Fig-18. is a subgraph of G but G2 is not a subgraph of G since there is no edge 

between v4 and v6 in G. G3 is also not a subgraph of G because there is no pentagonal subgraph. 

G4 is an isomorphic subgraph of G. 
 

Observations 

1. Every graph is its own subgraph 

2. A subgrah of a subgraph of G is a subgraph of G 

3. A single vertex in a graph G is a subgraph of G 

4. A single edge together with its end vertices is also a subgraph of G.  

 
Complement of a graph: Let G is a simple graph. The complement of G denoted by G

(sometimes denoted by G ) is the graph with the same vertex set VG but edge set EG 
contains of the edges not present in G (i.e. two vertices are adjacent in G if and only if they 

are not adjacent in G ). That is EG’ = {e E(V) : e  EG}, where E(V) edge set of the complete 
graph KV. 
The graph union G + Gon a n-vertex graph G is therefore the complete graph Kn. 

 

 

 

  

       G          G  

 

   The simple graph G and its complement G  

 

 

 

 

Matrix Representation of Graphs 

 

A geometrical representation of a graph has limited use. When a graph has many vertices 

and edges, it is essential to use a computer to perform graph algorithms. A matrix is convenient 

to represent a graph by means of numbers, which are easy to store and manipulate in computers 

than at recognizing pictures. 



 
 

A graph is completely determined by specifying either its adjacency structure or its 

incidence structure. These specifications provide for more efficient ways of representing a large 

or complicated graph than a pictorial representation.  

In this section we introduce the incidence, adjacency, circuit, path and cut-set matrices of a 

graph and establish several properties that help to reveal the structure of a graph. Not only these 

matrices are useful device for storing the basic structure of any graph, they manipulate in order 

to study its properties. The properties of these matrices and other related results to be established 

in this section will be used in other section of chapter-6 and chapter-7.  

 

 

Adjacency Matrix 

Suppose that a graph n vertices, numbered v1, v2, ….., vn.. This numbering imposes arbitrarily on 

the set of vertices. Having ordered the vertices, we can form an n  n matrix where entry (i, j) is 

the number of edges between vi and vj. 

   

Definition: Let G(VG, EG) be a vertex-labeled simple graph of order n. The adjacency matrix A 

= (aij)nn of G is the matrix in which the entry aij is defined as follows:  

 

G is undirected: 

 aij = 




otherwise   0,

v toadjacent  iswhen v1, ji
 

G is directed: 

 

 aij = 


 

otherwise   0,

E)v,(vif,1 ji
 

where vi and vj are the vertices of G. 

  

 

Example:   

      
          The simple graph G and the directed simple G(D) 

 

The adjacency matrices for the graphs are  

AG = 





















0101

1011

0101

1110

 and  AG(D) = 





















0001

1000

0100

0110

 respectively. 
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Observations: 

 

 There are a number of observations that we can make about the adjacency matrix A of a 

graph G: 

 

G is undirected simple graph: 

 

(i) A is symmetric. 

(ii) A is a zero matrix if and only if G is a null graph. 

(iii) The sum of entries in each row i of A equals to the degree sum of vi.. 

(iv) Identity columns indicate the multiple edges. 

(v) A is a 0-1 bit (or binary) matrix and there is a one-to-one correspondence between n 

vertices and nn symmetric binary matrix with all entries on the leading diagonal equal to 

zero.  

(vi) The (i, j) entry of A
m

 is the number of paths of length m from vertex vi to the vertex vj, in 

G.  

(vii) If i  j the (i, j) entry of A
2
 is equal to the number of paths containing exactly two edges 

from vi and vj. The (i, i) entry of A
2
 is the degree of vi and that of A

3
 is equal to twice the 

number of triangles containing vi. 

(viii) The (i, j) entry of (A + A
2
 + A

3
+ …. + A

n
) gives the number of paths of length m or less 

from vi to vj. 

 

G is directed simple graph: 

 

(i) A is not necessarily symmetric 

(ii) The sum of the entries in any column j of A is equal to the number of arcs directed 

towards vj. 

(iii) The sum of the entries in any row i is equal to the number of arcs directed away from 

vertex vi. 

(iv) The (i, j) entry of A
m

 is equal to the number of walks of length m from vertex vi to vj.  

(v) The diagonal entries of A∙A
T
 shows the out degree of the vertices of G and diagonal 

entries of A
T
∙A shows the in degree of the vertices of G. 

 

Note: Adjacency matrices can also be used to represent multigraphs or pseudograph. These 

matrices are not a bit matrix. 

 Example: Consider the following graph which is not simple.    

          
    

            The graph G  

v

v

v

v

1 2

3 4



 
 

The adjacency matrix for the above graph is AG = 





















0211

2003

1021

1310

. 

 

Incidence Matrix: 

 Definition: Consider a graph G with n vertices and m edges having no self loops. The incidence 

matrix BG = (bij)nm of G has n rows, one for each vertex, and m columns one for each edge. The 

entry bij is defined as follows: 

G is undirected: 

 bij = 




otherwise   0,

vertexiththeonincidentis edgejth  theif,1
 

G is directed: 

 bij = 










vertex.iththeonincidentnotisedgejththeif 0,

ittowardsorientedandvertexithonincidentisedgejththeif1

itfromawayorientedandvertexithonincidentisedgejththeif1

 

 

Example: Consider the graphs G and G(D) in Fig.-1. Find the incidence matrix.  

The incidence matrices for the graphs are  

BG = 





















01100

10110

00011

11001

4

3

2

54321

1

v

v

v

v

eeeee

   and BG(D) = 





























01100

10110

00011

11001

4

3

2

54321

1

v

v

v

v

eeeee

 respectively.  

 

Observations: 

  

The following observations are made about the incidence matrix: 

 

(i)  Each entry is either 0 or 1. 

(ii)  Identical columns indicate the multiple edges. 

(iii)  A row with all zeros correspondence to an isolated vertex. 

(iv)   A row with single unit entry correspondence to a pendent vertex. 

(v)  The sum of entries along ith row is the degree of the corresponding vertex vi. 

(vi)   If B is a 0-1 matrix, i.e. G is simple then there is a one-to-one correspondence 

 between vertices and edges of B. 

(vii) The graphs are isomorphic if and only if their corresponding incidence matrices differ 

only by a permutation of rows or columns. 

(viii) If G is a connected graph with n vertices then the rank of B is n-1. 



 
 

(ix) If G is disconnected and consist of two components G1 and G2, the incidence matrix B(G) 

can be written in block-diagonal form as 

B(G) = 

















)G(B0

0)G(B

2

1







 

      Where B(G1) and B(G2) are the incidence matrices of components G1 and G2. 

(x)  If G has k components then rank of B is n-k. 

Graph Connectivity 

 

Many problems can be modeled with paths formed by travelling along the edges of the graph. 

For instance, the problem of determining whether a message can be sent between two computers 

using intermediate links can be studied with a graph model. Problems of efficiently planning 

routes for mail delivery, garbage pickup, and diagnostics in computer network and so on can be 

solved using models that involve paths in graphs. Some graph theoretical questions ask for 

optimal solutions to problems such as: find a shortest path (in a complex network) from a given 

point to another. 

  

Definition: A walk or an edge sequence in a graph is defined as a finite alternating sequence of 

vertices and edges beginning and ending with vertices such that each edge in the sequence is 

incident with the vertices preceding it and succeeding it.  

No edge appears more than once in a walk. A vertex however may appear more than once. The 

vertices at the beginning and at the end of a walk are called terminal vertices. Whenever the 

terminal vertices are same then the walk is called closed walk, otherwise open walk or trial. 

 Definition: An open walk in which no vertex appears more than once is called a path.  

A path of length n from v0 to vn is an alternating sequence of n +1 vertices and n edges beginning 

with v0 and ending with vn (v0e1v1e2v2…..vn-1envn) in which edge ei is incident on vertices vi-1 and 

vi (i = 1, 2, …., n).  

Definition:  A circuit (cycle) is a closed path of non-zero length with no repeated edges.  

A simple circuit is a cycle from v to v in which no vertex (except the starting vertex that appear 

twice) appears more that once. Clearly every vertex in a simple circuit is of degree two and does 

not contain the same edge more than once. Note that every self-loop is a circuit but every circuit 

is not a self-loop. 

Example: For the graph G in Fig.- we have the following information  

 

 

 

 

 

 

 

 

 

 

 

 

The graph G 



 
 

 

Walk Simple path Cycle Simple cycle 

(v6e7v5e5v2e4v4e3v3e2v2e1v1) No No No 

(v6e7v5e5v2e4v4) Yes No No 

(v2e6v6e7v5e5v2e4v4e3v3e2v2) No Yes No 

(v5e7v6e6v2e5v5) No Yes Yes 

v7 Yes No No 

 

Observation: Following figure summarized the above definitions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Walk, paths and circuits as subgraphs 

 

Connected Graphs and Components: When does a computer network have the property that 

every pair of components can share information, if message can be send through one or more 

intermediate computers, when a graph is used to represent this computer network, where vertices 

represent the computers and edges represents the communications links, this question become 

when is there always a path between two vertices in the graph. 

Definition: A graph G is said to be a connected graph if there is a path between every pair of 

distinct vertices of G. 

 

       

 

 

 

 

 

                                                                                               

The graphs G1 and G2 

Sub graph
     of G

Walk
in G

Path 
in G

 
in G

Circuit

Any collection of 
      edges in G

  A non-edge retracing
sequence of edges in G

A non-intersecting 
  open w alk in G

A non-intersecting
 closed w alk in G

v4

e3

v1

v2

v5

e1

v2 v3
v4

v1

v3

e4
e4

e3

e2 e2

e1

G1 G2



 
 

 

Here G1 is a connected graph, but G2 is not a connected graph. 

 

Components: A graph that is not connected is the union of two or more connected sub graphs, 

each pair of which has no vertices in common. These disjoint connected sub graphs are called the 

components of the graph. 

 

Definition: Let G be a graph and v be a vertex in G. The sub graph G of G consisting of all 

edges and vertices of G that are contained in some path beginning at v is called the component of 

G. 

 

Example:  The component of the graph G in Fig. Containing v3 is the subgraph G1 = (V1, E1) 

where V1 = {v1, v2, v3}. And E = {e1, e2, e3}. Component of G containing v4 is the subgraph G2 = 

(V2, E2) where V1 = {v4} and E2 = φ. 

    
                The graph G 

 

Theorem 1: A graph is connected if and only if it has one and only one component. 

 

Proof: Let G(V, E) be a connected graph. Then for any two vertices u, v  V there is a path from 

u to v. If possible let there exist two components containing the vertices vi and vj. Then by 

definition by component there does not exist any path between vi and vj. If we consider more that 

two components in the same way we arrive a contradiction. Hence there exists only one 

component. 

Conversely, suppose that there exist one and only one component in G. Now we show that G is 

connected. If not there exist at least two vertices vi, vj  V for which there does not exist any 

path between vi and vj and we get two components one containing vi and other containing vj.  

This is a contradiction. Hence the graph is connected. 

  

Theorem 2: If a graph (connected or disconnected) has exactly two vertices of odd degree, there 

must be a path joining these two vertices. 

Proof: Let G be a connected graph with all vertices of even degrees except u and v, which are of 

odd degrees. We know that the number of odd degree vertices in a graph is always even. 

Therefore, for every component of a disconnected graph cannot have an odd number of odd 

degree vertices. Hence u, v must have in the same component of G and must have a path between 

them. 

 

Theorem 3: In a simple graph with n vertices and m components can have at most 

2

)1mn)(mn( 
 edges. 

v

v

v

v

v

v
1

2 3

4

5

6

ee

e

e1

2

3 4



 
 

Proof: Let G be the simple graph with n vertices and m components. Let K1, K2, ….., Km be the 

components of G.  Let ni (i = 1, 2, …, m) be the number of vertices in Ki. Then   n1 + n2 + …. + 

nm = n. 

Since the graph is simple maximum number of edges in Ki is 
2

1)(nn ii 
. 

So the maximum number of edges in G is 


m

1i 2

1)(nn ii  = 
2

n
n

2

1 m

1i

2
i 



. 

Now 



m

1i

m-n 1)(ni . 

Therefore, 
2

i m)(n1)(n

2m

1i













 

 or 
2

ji

2

i m)(n1)1)(n(n21)(n
m

1i ji

 
 

 

 or 
2

ji m)(n1)1)(n(n2mn2n
m

1i ji

2
i  

 

 

 or mn2m)(nn 2
m

1i

2
i 



. 

Hence 


m

1i 2

1)(nn ii  
2

n
m)2n2nmnn(

2

1 22  = 
2

m)-(n1)m-(n 
. 

 

Shortest Path Problems 

 In this section, we are finding a shortest path between vertices in a weighted connected 

graph.  The need to find shortest paths in graphs arises in many different situations. The path of 

least length between two vertices is the sum of the weights of the edges of the path. There are 

several algorithms to find the shortest path between two vertices in a weighted connected graph. 

We will present an algorithm by E. Dijkstra, one of the pioneers in computer science.  

Another important problem involving weighted connected graphs asks for the circuits of minimal 

length (weight) that visit every vertex of a complete graph exactly once. This is the famous 

traveling salesman problem. We will discuss this problem later in this section. 

 

Definition: Let G
w
 be an edge weighted graph, i.e. G

w
 is a graph G(VG, EG) together with a 

weight function w : EG   on its edges.  

 For any subgraph H of G, let w(H) = 
 GEe

w(e)  be the total weight of H.  

If P = e1e2 …. en is a path, then its weight is w(P) = 


n

1i
i )w(e . The shortest distance or minimum 

weighted distance between two vertices u and v is  

  v....u:Pw(P)minv)(u,dw
G  . 

 

 

 



 
 

Dijkastra's Algorithm for shortest path in weighted graph  

 

This algorithm finds the length of a shortest path from the vertex a to the vertex z in a weighted 

connected graph G = (V, E). G has the vertices a = v0, v1, …., vn = z and weight of the edge {vi, 

vj} is w(vi, vj) > 0 and the level of the vertex vi is L(vi). w(vi, vj) =  if {vi, vj} is not an edge in 

G. 

Input: A weighted connected simple graph G = (V, E) in which all weights are positive. 

Output: L(z) the length of the shortest path from a to z. 

 

Procedure Dejkstra 

For i: = 1 to n 

 L(vi) : =  

 L(a) : = 0 

 T : =  

{T is the set of vertices whose shortest distance from a has not been found} 

 while z  T 

 begin 

 u : = a vertex not in T with minimum L(u) 

 T : = T{u} 

 for all vertices not in T 

 if L(u) + w(u, v) < L(v) then L(v) : = L(u) + w(u, v) 

{this adds a vertex to T with minimum lable and updates the labels of vertices not in T} 

 end { L(z) = length of the shortest path from a to z}. 

 end Dijkstra. 

  

Example 1:  Apply Dijkstra's algorithm to the graph given below and find the shortest path from 

s to z. 

 

Solution: The initial labeling is given by. 

 

Vertex V s a b c d z 

(v) 0           

T {s, a, b, c, d, z} 

 

Iteration 1: u = s has (u) = 0. There are two edges incident with s i.e. {s, a} and {s, b}. Both a, b 

in T, (a) = > 2 = 0 + 2 = (s) + w{s, a}. So (a) becomes 2, and similarly (b) becomes 3. 

Now T becomes T - {s} i.e. s is coloured. Thus 

 

Vertex V s a b c d z 

(v) 0 2 3       

T { a, b, c, D, z} 

 

Iteration 2: Again, u = a has (u) a minimum and u T. There are two edges incident on a i.e. {a, 

b} and {a, d}. Since (d) =   > 4 = 2 + 2 = (a) + w{a, d}. So (d) becomes 4, and (b) = 3 < 4 

= 2 + 2 = (a) + w{a, b}so (b) becomes 3. 

Now T becomes T - {a} i.e. s is colored. Thus 



 
 

 

Vertex V s a b c d z 

(v) 0 2 3   4   

T {  b, c, d, z} 

 

Iteration 3: Again, u = b has (u) a minimum for u T. There are two edges incident on b i.e. {b, 

c} and {b, d}. Since (d) = 4 < 8 = 3 + 5 = (b) + w{b, d}. So (d) becomes 4, and (c) =   > 5 

= 3 + 1.5 = (b) + w{b, c}so (b) becomes 5. 

Now T becomes T - {b} i.e. s is colored. Thus 

 

Vertex V s A b c d z 

(v) 0 2 3 5 4   

T {   c, d, z} 

 

Iteration 4: Again, u = d has (u) a minimum for u T. There are two edges incident on d i.e. {d, 

c} and {d, z}. Since (c) = 5 < 7 = 4 + 3 = (d) + w{d, c}. So (c) remains as it is and (z) =   

> 8 = 4 + 4 = (d) + w{d, z}so (c) becomes 7. 

Now T becomes T - {d} i.e. s is colored. Thus 

 

Vertex V s A b c d z 

(v) 0 2 3 5 4 8 

T {   c,  z} 

 

Iteration 5: u = c has (u) a minimum for u T. There is one edge incident on c i.e. {c, z}. Since 

(z) = 8 > 7 = 5 + 2 = (c) + w{d, z}. So (f) becomes 7. 

 Now T becomes T - {c} i.e. s is colored. Thus 

 

Vertex V s A b c d z 

(v) 0 2 3 5 4 7 

T {     z} 

 

u = z, the only one choice 

hence stop. 

 

Thus the length of shortest paths from s to a, b, c, d and z are 2, 3, 5, 4 and 7 respectively. 

 

Euler and Hamiltonian Paths 

 

Euler trial and Tour: 

 

Definition: An Euler trial in a graph G is an open walk containing every edges of G. An Euler 

tour in a graph G is a closed walk containing every edges of G. A graph that has an Euler tour is 

called an Euler graph.  

 

Note:  (i)  If a graph consists of only one vertex v and no edges, then the path (v) is  



 
 

  an Euler tour of G.  

(ii) A graph that has an Euler trial may not have an Euler tour. 

 

Example 1: The graph G1 in Fig- has an Euler trial v1e1v2e2v3e3v4e4v1e5v3 or (v1, v2, v3, v4, v1, 

v3) but in G2 does not have an Euler trial.  

Similarly, in G3 has an Euler tour (v1, v5, v3, v4, v5, v2, v1) but in G4 does not have an Euler tour.  

 

 

 

 

 

 
 

 

 

        The simple graphs G1, G2, G3 and G4 

 

Example 2: Determine whether Eulerian trial and tour exist in the following graphs in Fig-. 

    
     G      H 

 

Solution: Since Eulerian trial and tour traverses each edge in a graph once and only once in G 

Eulerian trial is (a, c, e, b, a, d, e) and there is no Eulerian tour. In graph H Eulerian trial is (a, f, 

e, h, g, e, b, d, c, b, a) and the Eulerian tour is also the same.  

 

 

 

 

 

 

 

 

 

a c e

b

d a f

b
e

c

d
g
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                  Improper Integral 

INTRODUCTION:  When dealing with different problems of science and technology we have 

to face different integrations where either the limits a and b are finite or the integrand f(x) is 

unbounded in      . These type of integrals are called improper integral.  

Definition of Improper Integral: A definite integral        
 

 
 is called improper integral if 

either, 

i) A limit is infinite or both are infinite i.e.,     or    ; or both. 

ii) The integrand becomes infinite in      . 

Example: Some improper integrals are  
 

   
  

 

 
,  

 

          
  

 

 
,  

 

   
  

 

  
, etc. 

Example solved: Verify the improper integral  
 

 
  

 

 
 exists or not. 

Solution: Here f(x)=
 

 
, which has an infinite discontinuity at the left end point x=0.  

Therefore  
 

 
  

 

 
     

    
 

 

 
  

 

      
 

     
    

         
  

    
    

             

=  . 

Therefore the given improper integral does not exist.  

Gamma function: The improper integral                
 

 
 for    ,  

is called Gamma Function. 

Properties of Gamma function: 

1. For    ,             
 

 
 

    

  , for      

2.             ,    . 

3.         

4. When   is positive integer,          . 

5.   
 

 
    . 

 

 



 
 

Beta function: The improper integral                       
 

 
 for      ,  

is called Beta Function. 

Properties of Beta function:  

1.               for        

2.         
    

            
    

          
 

 

 

 
, for        

3.                                
 

 
 

 for        

4.        
        

      
, for        

Example:                  
 

 
 

. 

Here                  
 

 
 
  

 

 
     

  
 

 
   

 

 
 

 
 

 
 
  

 

 
     

  

 
 
 

 
 
 

 
  

 

 
 
 

 

 
 
    
  

 
 
 

 
 
 

 

 
 

 
 

  
  

 
 
 

 
 
 

 

 
 

   
. 

Laplace Transforms 

 Definition of Laplace Transform: Let       , the Laplace transform of y is defined   

by                     
 

 
 

The transformed function is called     , thus                

Formulae of Laplace Transform: 

1. L    
 

 
                                                           

  3.     
 

                                      4.                

  5.                              6.                    

  7.                             8.L                    

 

Existence of Laplace transform: 

If the function F(t) satisfies the following two conditions ,then its Laplace transform exists; 

(i) Every interval [0,N] can be subdivided into a finite number of intervals in each of which the 

function is continuous and has finite right and left limits. 

(ii)  There exist  a real constant M>0 and   such that for all t>N 

 
 

Properties of Laplace Transform: 

 

Property 1. Linearity Property 

If a and b are constants while F(t) and G(t) are functions of t, then 



 
 

                                      

 

Example 1:                            

 

Property 2. Change of Scale Property 

 

If              then                      

 

Example 2:                         

 

Property 3. First  Shifting Property  

Let                with a constant, then                   . 

 

Example 3: Find L{          }. 

Solution: We know           
 

           say).   Therefore, by first shifting 

property, L{          }=         =      =
 

         
. 

 

Second Shifting Property : 

If            )  with a constant,                         

                                                                                   

                         

 

Example 4: Find L{    } where F(t) is defined as     

           
  

 
              

  

 
 

                                               =                                     
  

 
. 

Solution: We know L{      }=
 

    
       

Therefore , by second shifting property, L{F(t)}  
    

     = 
    

 
 

    
. 

 

Property 4. Laplace Transform of the Derivatives 

 

First Derivative: 

 

If            )  then                       

 

Second Derivative: 

.           If            )  then                                 



 
 

n-th  Derivative: 

.If            )  then 

                                                      

 

Laplace Transform on Integrals: 

If               then            
 

 
     

 

 
 

 

Example 5: Find L{          
 

 
}. 

Solution: Let L{      )=f(s). Then L{          
 

 
}=

 

 
     

 

 
           

 

 
                                                

 

    
   

 

 
  

   

        
 

         -2s+5). 

 

Multiplication by   : 

If               then                  

       . 

 

Example 6: Find L{        . 

Solution: We know, L      )=
 

     . 

Therefore, L{                

    
 

     
                   . 

Division by t:   

 Let both      and 
    

 
  have Laplace transforms and let        denote the Laplace 

transform of      .   If        
    

 
  exists then    

    

 
          

 

 
 

                         

Example 7: Determine the Laplace Transform of 
 sin

2
t  

 t 
 . 

Solution: The Laplace Transform of       can be evaluated by 

 L{ sin
2
t }  =  L{ 

 1 - cos 2t 

 2 
 }  =  

 1 

  2 s  
  -  

1

  2  
 

 s 

  s
2
 + 4  

   =  
 2 

  s ( s
2
 + 4 ) 

  

Thus, L{
 sin

2
t  

 t 
}  =  





s



 
 2 

  s ( s
2
 + 4 ) 

   ds  =  
1

  4  
 ln 

  s
2
 + 4  

s
2   .       

 

Laplace Transform of Periodic Function: 

Let F(t) be a periodic function of period T(>0), then 

        
 

      
           

 

 

 



 
 

Laplace Transform of Unit Step Function: 

 

Definition of unit step function: 

Let        Then, the unit step function       is 

 

                                           

                                                

              

            Figure 1  The graph of the unit step function . 

 

 

Theorem 1: The function                          

                                                                                    can be expressed by a unit step 

function like                                        

 

Theorem 2: If                                             

                       

                               

 then      can be expressed as  

                                                                 

Theorem 3: If        is a unit step function, then            
    

 
  

 

Theorem 4: If               and        ) be a unit step function, then  

                           

 

Corollary: L{F(t)u(t-a)}=             . 

 

 

 

 

 



 
 

Example 7: a) Find L{F(t)} whereF(t)                                           

                                                                                    

   b)  Find L{F(t)} where         F(t)                               

                                                                                            

                                                                                          

 

INVERSE LAPLACE TRANSFORM 

Definition: 

If             , then      is called the Inverse Laplace Transform of      and is 

written as                     . 

Formulae of Inverse laplace Transform: 

 

          
 

 
 

  

 

  
 

  

  

    
 

   

 

   
 

    

 

     
       

 

     
       

 

     
        

 

     
        

 

 

Linear Property of Inverse Laplace Transform: 

 

If                and               ,then 

                      c1           +c2{            

 

PROBLEM1: Find     
 

   
 

  

     
 

 

    
 . 



 
 

Shifting Property of Inverse Laplace Transform: 

Theorem1: (First Shifting Property) 

   {        =              

PROBLEM1: Find     
     

        
 . 

 

Theorem2: (Second Shifting Property) 

                           {        }=               

                                                                                              

PROBLEM2: Find     
     

    
 . 

 

Change of Scale Property of Inverse Laplace Transform: 

                                   
 

 
  

 

 
      a is a constant. 

PROBLEM3 : Find     
  

      
   

 

Inverse Laplace Transform on Derivatives: 

 

Theorem1:(on 1st order derivatve) 

                        

PROBLEM 4: Find     
 

          

 

Theorem2:(on n
th

 order derivatve) 

       {                                         

PROBLEM5: Find        
   

   
   

 

Multiplication by   : 

Theorem1:                                 

                    

 

Theorem2:        {f(s)}=                       

    (0)=0,          {      }=       

PROBLEM6: Find     
 

         

 

Division by s:        {f(s)}=             {
    

 
         

 

 
. 

PROBLEM 7: Find     
 

        
   

 

 



 
 

 Inverse Laplace Transform of Integrals: 

                        

                                                          {       
 

 
  

    

 
  

PROBLEM 8: Find     
 

       
   

 

Convolution property of Inverse Laplace Transform: 

 

Definition of convolution of two functions:  (Convolution). Let f and g be piecewise 

continuous functions for t  0. Then the convolution of f and g denoted by fg, is defined 

by the integral 

                     
 

 
 . 

     

Convolution theorem;  Let f and g be piecewise continuous and of exponential order for 

t   0, then the Laplace transform of      is given by the product of the Laplace 

transform of f and the Laplace transform of g. That is 

                       

 

PROBLEM 9:    Using Convolution find  (a) L
 -1

 {s/(s
2
+1)

2
 }. 

 

Method of partial fraction to find  Laplace Inverse Transform  :        Laplace Inverse 

Transform can also be evaluated by using method of partial fraction. 

  PROBLEM 10:     Find   L
 -1

  
     

             
 . 

PROBLEM 10:  Find y if      
  

       
. 

Solution: 

                   

  

       
 

 

   
 

 

   
 

 

Solving for          we get               

Therefore,  
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SOLUTION OF ODE USING LAPLACE TRANSFORM: 

A  linear differential equation with constant coefficient can be solved with the help of 

Laplace Transform. Given a differential equation of y(t) ,we apply Laplace Transform on 

both side .Applying necessary property of  Laplace Transform, we find L{y(t)} as 

function of a variable, say       Then y(t)}=   {(               {(      is obtained by 

applying several theorems and properties of inverse Laplace Transform. 

 

Problem1: Solve , by Laplace transform, the differential equation 

                                             

 [Solution]  
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