## Assignment-III <br> MODULE-3 <br> (GRAPH THEORY)

1. Prove that the minimum no. of edges in a connected graph with $n$ vertices in $n-1$.
2. Suppose $G$ is a non-directed graph with 12 edges. If $G$ has 6 vertices each of degree 3 and rest have degree less than 3 , find the minimum number of vertices in $G$.
3. Show that the graphs $G$ and $G$ and $G^{\prime}$ are isomorphic.

4. Draw the graph whose incidence matrix is given below

$$
\left[\begin{array}{ccccc}
0 & 0 & 1 & -1 & 1 \\
-1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

5. Prove that the maximum number of edges in a connected simple graph with $n$ vertices is $\frac{n(n-1)}{2}$.
6. Examine whether the following two graphs are isomorphic.

7. Define the complement of a graph. Find the complement of the graph.

8. Construct the Adjacency matrix of the diagram.

9. Show that the maximum number of edges in a disconnected graph with n vertices and k components is $\frac{1}{2}(n-k)(n-k+1)$.
10. Examine whether the following two graphs are isomorphic.

