Assignment -I
 MODULE-1
 (ORDINARY DIFFERENTIAL EQUATION OF FIRST ORDER \& FIRST DEGREE)

Solve the following differential equation by finding integrating factors:

1. $\left(y^{2}+2 x^{2} y\right) d x+\left(2 x^{3}-x y\right) d y=0$
2. $x d y-y d x=\left(x^{2}+y^{2}\right)(x d x+y d y)$
3. $4 x^{3} y d x+\left(x^{4}+y^{4}\right) d y=0$
4. $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$
5.

Solve:

1. $y\left(2 x^{2} y+e^{x}\right) d x-\left(e^{x}+y^{3}\right) d y=0$
2. $\cos x(\cos x-\sin \propto \sin y) d x+\cos y(\cos y-\sin \propto \sin x) d y=0$
3. $\left(1+4 x y+2 y^{2}\right) d x+\left(1+4 x y+2 x^{2}\right) d y=0$
4. $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$

Solve the following differential equations:

1. $d x+x d y=e^{-y} \sec ^{2} y d y$
2. $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$
3. $\frac{d y}{d x}+\frac{1}{x} \tan y=\frac{1}{x^{2}} \operatorname{tanysec} y$
4. $y\left(2 x y+e^{x}\right) d x-e^{x} d y=0$
5. $\frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right)$
6. $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$

Find the general solution of the following equations:

1. $x p^{2}+(y-x) p-y=0$
2. $p^{2}-p\left(e^{x}+e^{-x}\right)+1=0$
3. $x^{2} p^{2}+3 x y p+2 y^{2}=0$
4. $p^{3}+2 x p^{2}-y^{2} p^{2}-2 x y^{2} p=0$
5. $y=2 p x+p^{2} y$
6. $p^{3}-4 x y p+8 y^{2}=0$
7. $x^{3} p^{2}+x^{2} p y+a^{3}=0$
8. $x=p y-p^{2}$

Obtain the general \& singular solutions of the following differential equations:

1. $p y=p^{2}(x-b)+a$
2. $y=p x+p-p^{2}$

Obtain the general solution of the following differential equations:

1. $y=2 p x+4 y p^{2}$
2. $y-2 p x+a y p^{2}=0$
3. $(p x-y)(x-p y)=2 p$
4. $x^{2} p^{2}+y p(2 x+y)+y^{2}=0$
