HALDIA INSTITUTE OF TECHNOLOGY LECTURE PLAN

Serving Department: Applied Science

Semester: 1st & 2nd

Paper Name: Engineering Physics I

Allotted Hour(s):42

Name of the Teacher:Dr. S. Mishra

Batch: Session:

Paper Code:PH 101& PH 201

Actual Hour(s):43

S1.	Date	Topics	50	Remarks/Books
No.			minutes	
		Module 1 : Oscillation		
1		Concept of Simple harmonic motion,	2	A Text of sound
		Solutions, Energy of SHMs, Superposition of		N K Bajaj
		S.H.Ms in two mutually perpendicular		
		directions, Lissajous' figures.		Engg Physics
2		Damped Harmonic Vibration –Differential	2	BD Roy
		equation and its solution, Logarithmic		
		decrement, Quality factor.		
3		Forced Vibration-Differential equation and its	2	
		solution, Amplitude and Velocity resonance,		
		Sharpness of resonance, Application L-C-R		
		Circuit.		
4		Remedial/Tutorial 1	1	
		Module 2:Optics1		
5		Interference of Electromagnetic waves,	2	Optics
		Condition for sustained Interference,		AK Ghatak
		Conservation of energy and intensity		
		distribution, Double slit as an example,		Optics
		concept of fringe width.		AK
6		Qualitative idea of spatial and temporal	1	Chakraborty
		coherence, Newton's Ring.		Ciluinaborey
7		Diffraction of light –Fresnel and Fraunhofer	1	
		class, Fraunhofer diffraction for single slit.		
8		Derivation and analysis of diffraction pattern	1	
		for single slit.		
9		Analysis of diffraction pattern of double slit,	1	
		Missing orders in double slit.		
10		N slit and plane transmission grating,	1	
		intensity distribution analysis, Missing orders		
		in N-slit.		
11		Rayleigh criteion, Resolving power of grating	1	
		and microscope.		
12		Remedial/Tutorial 2	1	
	•	Module 3: Optics 2		
13		General Concept of polarization, Plane of	1	Optics
		vibration and plane of polarization,		AK Ghatak
		Qualitative discussion on plane, circularly		
		and elliptically polarized light.		Optics
14		Polarization through reflection and Brewster's	1	Jenkins and
		law, Malus Law, Double refraction, Ordinary		White
		and Extra ordinary rays, Quarter and Half		WIIICC

	Wave Plates.		
15	Nicol's prism-Principle section, principle plane, Optic Axes, Construction and Polaroid, Detection of plane, circularly and elliptically polarized light by using Nicol Prism.	1	
16	Remedial/Tutorial 3	1	

S1.	Date	Topics	50 minutes	Remarks/Books
17		Fundamental differences between normal and laser lights, Preleminary idea of Rotational, Vibrational and Electronic Spectra,	1	Essentials of Laser Physics GD Baruah Laser BB Laud
18		Development of lasing system, Laser: Spontaneous and stimulated emission of radiation, Population inversion, Einstein's A&B co-efficient	2	
19		Optical resonator, condition for active laser action, Meta-stable states, Ruby Laser, He Ne Laser application of laser.	1	
20		Holography-Theory of Holography, Construction reconstruction, Application	2	
21		Remedial/Tutorial 4	1	
		Module 4: Quantum Physics		
22		Basic concepts about relativity, discrepancy in explaining the physical phenomena.	1	Concept of Modern Physics Auther Baizer
23		Modification of Newtonian concept to Galilian and Lorentz concept. Length contraction and time dialation.	1	
24		Concept of dependence of mass with velocity, Mass energy equivalence, Energy- momentum, ,	1	
25		Black body radiation-Rayleigh Jeans' law Weins law, Ultraviolate catastrophy, Experimental verifications.	1	
26		Planck's radiation law, calculation of the average energy of the oscillator and total energy radiation.	1	
27		Derivation of Wein's displacement law, Rayleigh Jeans' law, Wien's displacement condition. Stephan's law from Planck's radiation law.	1	
28		Remedial/Tutoria 5	1	
29		Compton Effect, Calculation of Compton wavelength and necessary relations.	1	
30		Wave-particle duality and de broglie's hypothesis, Concept of matter waves.	1	
31		Phase velocity and group velocity, relation between themselves, Some relationship between Phase velocity- group velocity.	1	
32		Devisson-Germer Expt., Heisenberg's Uncertainty Principle.	1	

33	Remedial/Tutorial 6	1	
	Module 5 :Crystalography		
34	Elementary ideas of crystal structure-lattice, basis, unit cell, primitive, non-primitive unit cells, Fundamental types of lattices-Bravis lattices, sc, f.c.c and b.c.c lattices	1	Engg Physics Bhatacharya and Pal SolidState Physics Babar and Puri
35	Miller Indices and Miller Planes, Co- ordination number and atomic packing factor.	1	
36	X-ray –origin of characteristics and continuous X ray, Bragg's law, Determination of lattice constant.	1	Concept of Modern Physics Auther Baizer
37	Remedial/Tutorial 7	1	
	Total	43	

Signature