HALDIA INSTITUTE OF TECHNOLOGY

LECTURE PLAN

Serving Department: Applied Science

Semester: 3rd & 4th

Paper Name: **Physics-II**

Allotted Hour(s): 30

Name of the Teacher:Dr. Rajesh Das

Dept.: Session:

Paper Code: PH-301&PH-401

Actual Hour(s): 29

S1. No.	Date	Topics	Hours	Remarks/Books
110.		Module – 1	<u> </u>	
1.		Basic Concept of scalar, Vector, product of scalar and vectors, Physical significances of grad, div, curl, Problems. Line integral, surface integral, volume integral.	1	Vector Analysis 1. Spigel, 2. Harper
2.		Line integral, surface integral, volume integral - physical examples in the context of electricity and magnetism, Problems. Statements of Stokes theorem and Gauss theorem. Expression of grad, div, curl and Laplacian in Spherical and Cylindrical co-ordinates.	1	
	•	Module – 2	:	
3.		Coulombs' law in vector form. Electrostatic field and potential. Gauss's law in integral form and conversion to differential form.	1	1. Electricity and Magnetism D. Chattopadhyay & P.C. Rakshit
4.		Application of Gauss's law in various problems.	1	
5.		Electrostatic potential and field, Poisson's Eqn. Laplace's eqn., application to Cartesian, Spherically and Cylindrically symmetric systems – effective 1D problems.	1	2. Electrodynamics D.J. Griffith
6.		Electric current, drift velocity,current density, continuity equation, steady current.	1	
7.		Dielectrics-concept of polarization, the relation D=ε0E+P, Polarizability, Gausses' law for dielectric polarization.	1	
8.		Localized fields, Electronic polarization, Polarization in monoatomic and polyatomic gases.	1	
9.		Tutorial1 – Electrostatics, Dielectrics	1	

	Module – 3:	<u> </u>		
10.	Lorentz force, force on a small current element placed in a magnetic field. Divergence of magnetic field, vector potential, Ampere's law in integral form and conversion to differential form.	1	 Electricity and Magnetism Chattopadhyay & P.C. Rakshit Electrodynamics D.J. Griffith 	
11.	Biot-Savart law and its applications.	1		
12.	Faraday's law of electro-magnetic induction in integral form and differential form, Motional emf.	1		
13.	Tutorial 2 – Magnetostatics, em induction	1		
•	Module – 4 :			
14.	Maxwell's field equations; Concept of displacement current.	1	1. Electricity and Magnetism	
15.	Maxwell's wave equation and its solution for free space and associated problems.	1	D. Chattopadhyay & P.C. Rakshit2. ElectrodynamicsD.J. Griffith	
16.	E.M. wave in a charge free conducting media, Skin depth, Analysis of Skin Depth for good and bad conductors.	1		
17.	E.M. energy flow & Poynting Vector.	1		
18.	Tutorial 3 –Maxwell's field theory	1		
	Module – 5 :	}		
19.	Degrees of freedom, Generalised coordinates, velocity, momentum, energy, force, potential,.	1	Classical Mechanics 1. Gupta Kumar 2. Goldstein	
20.	Principle of virtual work, De'Alembart's principle, Lagrange's Equation of motion and Lagrangian.	1		
21.	Lagrange's Equation of motion for electrical circuit, Several problem analysis using Lagrangian in 1-D.	1		
22.	Hamilton's Equation of motion and Hamiltonian. Configuration space, phage space, Properties of Hamilton.	1		
23.	Formulation of Hamilton's equation of motion and its problems.	1		
n	Module – 6:			
24.	Concept of energy levels and energy states. Microstates, macrostates and thermodynamic probability, equilibrium macrostate, Concept of ensembles, classifications of ensembles, Concept of phage space and Configuration space.	1	Statistical Mechanics by 1. Gupta Kumar 2. B.B. Laud 3. R.K. Pathria	

25.	Properties of MB, FD, BE statistics	1
	fermions, bosons, physical	
	significance and application,	
	Classical limits of quantum	
	statistics.	
26.	Fermi distribution at zero & non-	1
	zero temperature. MB, BE	
	distribution variation analysys,	
	Density of states.	
27 .	Calculation of Fermi level in	1
	metals, also total energy at	
	absolute zero of temperature and	
	total number of particles.	
28.	Bose-Einstein statistics. Planck's	1
	law of blackbody radiation.	
29.	Tutorial 4 – Statistical	1
	Mechanics	
	Total-	29